4.8 Article

Synthetic molecular evolution of hybrid cell penetrating peptides

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-04874-6

关键词

-

资金

  1. NIH NIGMS [R01GM111824]
  2. Louisiana Board of Regents Support Fund

向作者/读者索取更多资源

Peptides and analogs such as peptide nucleic acids (PNA) are promising tools and therapeutics, but the cell membrane remains a barrier to intracellular targets. Conjugation to classical cell penetrating peptides (CPPs) such as pTat(48-60) (tat) and pAntp(43-68) (penetratin) facilitates delivery; however, efficiencies are low. Lack of explicit design principles hinders rational improvement. Here, we use synthetic molecular evolution (SME) to identify gain-of-function CPPs with dramatically improved ability to deliver cargoes to cells at low concentration. A CPP library containing 8192 tat/penetratin hybrid peptides coupled to an 18-residue PNA is screened using the HeLa pTRE-LucIVS2 splice correction reporter system. The daughter CPPs identified are one to two orders of magnitude more efficient than the parent sequences at delivery of PNA, and also deliver a dye cargo and an anionic peptide cargo. The significant increase in performance following a single iteration of SME demonstrates the power of this approach to peptide sequence optimization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据