4.5 Article

Left Ventricular Diastolic Myocardial Stiffness and End-Diastolic Myofibre Stress in Human Heart Failure Using Personalised Biomechanical Analysis

期刊

出版社

SPRINGER
DOI: 10.1007/s12265-018-9816-y

关键词

Heart failure; Myocardial tissue stiffness; Biomechanics; Cine CMR; Catheterisation; Myofibre stress

资金

  1. Health Research Council of New Zealand [13/317, 17/608]

向作者/读者索取更多资源

Understanding the aetiology of heart failure with preserved (HFpEF) and reduced (HFrEF) ejection fraction requires knowledge of biomechanical factors such as diastolic myocardial stiffness and stress. Cine CMR images and intra-ventricular pressure recordings were acquired in 8 HFrEF, 11 HFpEF and 5 control subjects. Diastolic myocardial stiffness was estimated using biomechanical models and found to be greater in HFrEF (6.4 +/- 1.2 kPa) than HFpEF (2.7 +/- 0.6 kPa, p < 0.05) and also greater than control (1.2 +/- 0.4 kPa, p < 0.005). End-diastolic mid-ventricular myofibre stress derived from the personalised biomechanics model was higher in HFrEF (2.9 +/- 0.3 kPa) than control (0.9 +/- 0.3 kPa, p < 0.01). Chamber stiffness, measured from the slope of the diastolic pressure-volume relationship, is determined by the intrinsic tissue properties as well as the size and shape of the heart, and was unable to distinguish between any of the three groups (p > 0.05). Personalised biomechanical analysis may provide more specific information about myocardial mechanical behaviour than global chamber indices, which are confounded by variations in ventricular geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据