4.7 Article

Expanding Primary Metabolism Helps Generate the Metabolic Robustness To Facilitate Antibiotic Biosynthesis in Streptomyces

期刊

MBIO
卷 9, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.02283-17

关键词

actinobacteria; primary metabolism; Streptomyces; antibiotics; evolution; pyruvate kinase

资金

  1. Scottish Universities Life Science Alliance (SULSA)
  2. Natural Environment Research Council [NE/M001415/1]
  3. CONACyT, Mexico [177568]
  4. Langebio institutional funds
  5. BBSRC/NPRONET [NPRONET POC028]
  6. British Council [275898511]
  7. Edge Hill University
  8. BBSRC [BB/L013754/1] Funding Source: UKRI
  9. NERC [NE/M001415/1] Funding Source: UKRI

向作者/读者索取更多资源

The expansion of the genetic repertoire of an organism by gene duplication or horizontal gene transfer (HGT) can aid adaptation. Streptomyces bacteria are prolific producers of bioactive specialized metabolites that have adaptive functions in nature and have found extensive utility in human medicine. While the biosynthesis of these specialized metabolites is directed by dedicated biosynthetic gene clusters, little attention has been focused on how these organisms have evolved robustness in their genomes to facilitate the metabolic plasticity required to provide chemical precursors for biosynthesis during the complex metabolic transitions from vegetative growth to specialized metabolite production and sporulation. Here, we examine genetic redundancy in actinobacteria and show that specialized meta-boliteproducing bacterial families exhibit gene family expansion in primary metabolism. Focusing on a gene duplication event, we show that the two pyruvate kinases in the genome of Streptomyces coelicolor arose by an ancient duplication event and that each has evolved altered enzymatic kinetics, with Pyk1 having a 20-fold-higher k(cat) than Pyk2 (4,703 s(-1) compared to 215 s(-1), respectively), and yet both are constitutively expressed. The pyruvate kinase mutants were also found to be compromised in terms of fitness compared to wild-type Streptomyces. These data suggest that expanding gene families can help maintain cell functionality during metabolic perturbation such as nutrient limitation and/or specialized metabolite production. IMPORTANCE The rise of antimicrobial-resistant infections has prompted a resurgence in interest in understanding the production of specialized metabolites, such as antibiotics, by Streptomyces. The presence of multiple genes encoding the same enzymatic function is an aspect of Streptomyces biology that has received little attention; however, understanding how the metabolic expansion influences these organisms can help enhance production of clinically useful molecules. Here, we show that expanding the number of pyruvate kinases enables metabolic adaptation, increases strain fitness, and represents an excellent target for metabolic engineering of industrial specialized metabolite-producing bacteria and the activation of cryptic specialized metabolites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据