4.7 Article

In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants

期刊

SURFACE & COATINGS TECHNOLOGY
卷 334, 期 -, 页码 450-460

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2017.11.027

关键词

Mg-based alloy; Zinc-doped hydroxyapatite; Corrosion behavior; Antibacterial activity; Cytotoxicity

向作者/读者索取更多资源

Magnesium alloys as biodegradable materials have received great attention for orthopedic application as a result of their good biocompatibility, bioactivity, and mechanical properties. However, the clinical use of Mg alloys is restricted by high degradation rate. In order to reduce the degradation rate, TiO2 incorporated micro-arc oxidation (TM) coatings were prepared on Mg- Ca alloy using micro-arc oxidation (MAO). Subsequently, zinc-doped hydroxyapatite (ZH) coating was deposited by electrophoretic deposition (EPD) on the MAO coating. The electrochemical test results demonstrated that the deposition of ZH composite coatings on Mg alloy significantly reduces its corrosion rate and improves its charge transfer resistance. Antibacterial activity of the coating against Escherichia coli (E. coli) was studied using disk-diffusion and spread plate methods. The results revealed that the inhibition zone amplified after deposition of TM and ZH coatings on Mg alloy, whereas more inhibition zone was found around ZH coating. In addition, the number of E. coil colonies reduces to 92% after ZH coating implying its good antibacterial properties. The cytotoxicity test indicated that cell viability of MG63 osteoblast cells cultured with ZH extracts was higher compared to the TM coating and bare Mg alloy. These results confirm that Mg alloy coated by TM/ZH exhibits high corrosion resistance, antibacterial activity and favorable bioactivity and cyto-compatibility, indicating their substantial potentials for biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

Photocatalytic membranes: a new perspective for persistent organic pollutants removal

Mahesan Naidu Subramaniam, Pei Sean Goh, Devagi Kanakaraju, Jun Wei Lim, Woei Jye Lau, Ahmad Fauzi Ismail

Summary: The article delves into the roles of photocatalysis and membrane technology in hybrid photocatalytic membranes for treating wastewater containing persistent organic pollutants (POP). It covers critical reviews on POP's impact, origins, and the challenges and future directions in this field, as well as discussing the fundamentals of photocatalytic mechanism and current trends in photocatalyst design.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2022)

Article Polymer Science

Polyaniline decorated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells application

Lukka Thuyavan Yogarathinam, Juhana Jaafar, Ahmad Fauzi Ismail, Pei Sean Goh, Mohd Hilmi Bin Mohamed, Mohamad Fahrul Radzi Hanifah, Arthanareeswaran Gangasalam, Jerome Peter

Summary: Graphene oxide and conductive polyaniline coated graphene oxide were used as additives in sulfonated poly(ether ether ketone) nanocomposite membrane to reduce methanol crossover in direct methanol fuel cells. The modified membrane exhibited increased water uptake, ion exchange capacity, and proton conductivity, as well as improved oxidative stability and selectivity for DMFC applications.

POLYMERS FOR ADVANCED TECHNOLOGIES (2022)

Article Biochemistry & Molecular Biology

Biomolecule-Enabled Liquid Separation Membranes: Potential and Recent Progress

Faiz Izzuddin Azmi, Pei Sean Goh, Ahmad Fauzi Ismail, Nidal Hilal, Tuck Whye Wong, Mailin Misson

Summary: Membrane surface modification is a favored strategy to enhance membrane-based separation performance. Biomolecules, with their unique structural and chemical properties, have gained attention as potential modifiers for liquid separation membranes. These biomolecules exhibit high surface hydrophilicity and antimicrobial properties, making them attractive alternatives for the development of high-performance membranes.

MEMBRANES (2022)

Article Engineering, Chemical

Facile fabrication of polyethyleneimine interlayer-assisted graphene oxide incorporated reverse osmosis membranes for water desalination

Zhi Chien Ng, Woei Jye Lau, Gwo Sung Lai, Jianqiang Meng, Huihui Gao, Ahmed Fauzi Ismail

Summary: In this study, a novel interlayer-assisted interfacial polymerization technique with the inclusion of graphene oxide (GO) was used to improve the permeability/selectivity trade-off, chlorine attack, and fouling issues of reverse osmosis membranes. The results showed that the PEI-interlayered thin film composite (iTFC) membrane exhibited higher pure water permeance and NaCl rejection compared to the conventional TFC (cTFC) membrane. The inclusion of 0.01 wt/v% GO further enhanced the performance of the iTFC membrane, producing a PEI-interlayered thin film nanocomposite (iTFN-10) membrane with greater pure water permeance without compromising rejection. The iTFN-10 membrane also demonstrated better antifouling and antibacterial properties compared to commercial membranes.

DESALINATION (2022)

Article Environmental Sciences

The Effect of BPA-Treated Water on the Small Intestine via an In Vivo Study

Roziana Kamaludin, Zatilfarihiah Rasdi, Mohd Hafiz Dzarfan Othman, Siti Hamimah Sheikh Abdul Kadir, Mohd Yusri Idorus, Jesmine Khan, Wan Nor I'zzah Wan Mohamad Zain, Ahmad Fauzi Ismail, Mukhlis A. Rahman, Juhana Jaafar

Summary: This study found that BPA exposure can affect the small intestine and intestinal barrier of pregnant rats and their fetuses, but BPA-treated water through photocatalytic membrane does not have detrimental effects on the gastrointestinal tract.

TOXICS (2022)

Article Polymer Science

Influence of magnetic casting on the permeability and anti-fouling properties of a novel iron oxide/alumina/polysulfone mixed matrix membrane

Targol Hashemi, Mohammad Reza Mehrnia, Aydin Marandi, Ahmad Fauzi Ismail

Summary: Novel mixed matrix membranes were prepared using magnetic casting and nanocomposite technology, resulting in increased water flux and improved anti-fouling properties.

JOURNAL OF APPLIED POLYMER SCIENCE (2023)

Article Chemistry, Multidisciplinary

Selectively mixed matrix hemodialysis membrane for adequate clearance of p-cresol by the incorporation of imprinted zeolite

Yanuardi Raharjo, Ahmad Fauzi Ismail, Mohd Hafiz Dzarfan Othman, Mochamad Zakki Fahmi, Saiful, Djoko Santoso, Mochamad Ifan Nugroho, Diana Merna, Maipha Deapati Arief, Risma Chikita Pratama

Summary: This study aimed to develop a novel imprinted zeolite (IZC) and incorporate it into a polyethersulfone (PES) and poly(vinyl pyrrolidone) (PVP) mixed matrix membrane (HF-MMM) for hemodialysis treatment. The optimized parameters showed that this membrane has the potential to effectively remove uremic toxins.

RSC ADVANCES (2023)

Review Chemistry, Multidisciplinary

Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide

Pei Sean Goh, Zahra Samavati, Ahmad Fauzi Ismail, Be Cheer Ng, Mohd Sohaimi Abdullah, Nidal Hilal

Summary: Membrane technology has gained popularity in industries for separation processes, desalination, and wastewater treatment. The development of nanocomposite membranes that merge nanotechnology and membrane technology has become a rapidly growing research area, motivated by the need for high-performance liquid separation membranes. The unique morphology and topology of nanostructured materials, such as TiO2, have attracted attention due to their hydrophilicity, antibacterial, and photocatalytic properties. This review provides an overview of the modifications of liquid separation membranes using TiO2 as an example of multidimensional nanomaterials, discussing their performance and advantages.

NANOMATERIALS (2023)

Article Environmental Sciences

Fabrication and characterization of dual-layer hollow fibre membranes incorporating poly(citric acid)-grafted GO with enhanced antifouling properties for water treatment

Noresah Said, Woei Jye Lau, Muhammad Nidzhom Zainol Abidin, Amir Mansourizadeh, Ahmad Fauzi Ismail

Summary: In this study, poly(citric acid)-grafted graphene oxide (PGO) was incorporated into single-layer hollow fiber (SLHF) and dual-layer hollow fiber (DLHF) membranes to improve their antifouling properties during water treatment. The optimized PGO loading of 0.7 wt% in SLHF membrane resulted in higher water permeability and bovine serum albumin rejection compared to the neat membrane. Similarly, introducing 0.7 wt% PGO only to the outer layer of DLHF membrane improved its antifouling properties and increased the rejection rate of bovine serum albumin to 97.7%.

ENVIRONMENTAL TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Evaluation of casein protein transport through surface functionized membranes using irreversible thermodynamics and concentration polarisation model

A. Sumisha, G. Arthanareeswaran, A. F. Ismail

Summary: This study mainly focuses on the analysis of casein protein transport characteristics through ultrafiltration membranes. Polysulfone-based polymer membranes modified with different materials are used. The experimental results show that the transport of casein is controlled by convection.

SEPARATION SCIENCE AND TECHNOLOGY (2023)

Article Engineering, Chemical

Novel translucent hollow fiber polyvinylidene fluoride photocatalytic membrane for highly efficient oil-produced wastewater treatment: The role of translucency on degradation efficiency

Komathi Kannathasan, Juhana Jaafar, Nuor Sariyan Suhaimin, Nurul Natasha Mohammad Jafri, Sadaki Samitsu, N. H. Alias, A. F. Ismail, T. Matsuura, M. H. D. Othman, Mukhlis A. Rahman, Farhana Aziz, Norhaniza Yusof, Mohammed Rasool Qtaishat, M. I. Ismail

Summary: A novel method of fabricating translucent photocatalytic membrane using a modified morphological structure as a photocatalyst has been developed. The study highlights the effect of translucency on the efficiency of photocatalytic reactions.

CHEMICAL ENGINEERING RESEARCH & DESIGN (2023)

Article Engineering, Environmental

Treatment of radionuclide-containing wastewater using thin film composite reverse osmosis membrane with spray coating-assembled titania nanosheets

Nor Akalili Ahmad, Lih Jang Tam, Pei Sean Goh, Nurfirzanah Azman, Ahmad Fauzi Ismail, Khairulnadzmi Jamaluddin, Gangasalam Arthanareeswaran

Summary: In this study, a thin film composite (TFC) reverse osmosis (RO) membrane with high long-term stability and antifouling properties was developed by spray coating the polyamide (PA) layer with oppositely charged titania nanosheets (TNS). The manufactured membranes showed improved permeability and radionuclide rejection, making them suitable for treating radionuclide-containing wastewater. The findings highlight the potential of tailored TFC RO membranes in the treatment of radioactive wastewater.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Multidisciplinary Sciences

Fabrication of PES MMMs with Improved Separation Performances Using Two-Dimensional rGO/ZIF-8 and MoS2/ ZIF-8 Nanofillers

Noor Fauziyah Ishak, Nur Hidayati Othman, Najihah Jamil, Nur Hashimah Alias, Fauziah Marpani, Munawar Zaman Shahruddin, Lau Woei Jye, Ahmad Fauzi Ismail

Summary: Modifying polymeric membranes using ZIF-8 functionalized-2D nanofillers showed improved gas permeability and selectivity performance. The rGO/ZIF-8 and MoS2/ZIF-8 nanofillers were successfully synthesized and characterized. Addition of 10 wt% of each nanofiller to the PES solution resulted in MMMs with enhanced thermal stability. Compatibility between the 2D nanofillers and PES matrix was confirmed by FTIR and XRD analysis. The obtained MMMs exhibited significantly improved gas separation properties, demonstrating the potential of using 2D nanofillers for high-performance membranes.

PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY (2023)

Article Engineering, Environmental

MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation

Nurul Syazana Fuzil, Nur Hidayati Othman, Nur Hashimah Alias, Fauziah Marpani, Muhammad Shafiq Mat Shayuti, Munawar Zaman Shahruddin, Mohd Rizuan Mohd Razlan, Norazah Abd Rahman, Woei Jye Lau, Mohd Hafiz Dzarfan Othman, Ahmad Fauzi Ismail, Tutuk Djoko Kusworo, Anwar Ul-Hamid

Summary: In this study, the performance of membrane distillation (MD) was improved by coating MoS2-TiO2 on a PVDF-based hollow fiber membrane. The MoS2-TiO2/PP20 membrane showed enhanced hydrophobicity and porosity, leading to significantly improved MD performances. This work suggests that the MoS2-TiO2 coating can overcome the typical permeability/rejection rate trade-off effect and play a significant role in enhancing MD performances.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Review Engineering, Environmental

A crucial review on the challenges and recent gas membrane development for biogas upgrading

Nur Fajrina, Norhaniza Yusof, Ahmad Fauzi Ismail, Farhana Aziz, Muhammad Roil Bilad, Meshel Alkahtani

Summary: This article summarizes recent developments in membrane technology tailored for biogas upgrading, including the structure and classification of membrane materials as well as effective approaches to overcome the trade-off between permeability and selectivity. Additionally, other challenges are comprehensively discussed, and future research required to tackle biogas upgrading issues is projected.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Materials Science, Coatings & Films

Effect of micro-arc oxidation on antimicrobial properties and biocompatibility of biomedical Ti-xFe alloys

Yanchun Xie, Xiaodong Wang, Shenshen Cui, Jiali Hu, Yongcun Wei, Yi Lian, Anwu Xuan, Bin Yu, Erlin Zhang

Summary: In this study, Ti-xFe (x = 3,5,9 wt%) alloys were surface modified by micro-arc oxidation (MAO) to improve their antimicrobial properties and biocompatibility. The results showed that increasing the oxidation voltage greatly enhanced the roughness and hydrophilicity of Ti-xFe-MAO alloys. The Ti-xFe alloys micro-arc oxidized at 250 V and 300 V exhibited improved corrosion resistance and excellent antimicrobial and cytocompatibility properties, making them suitable for orthopedic implant materials.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Fabrication of ultra-low porosity plasma electrolytic oxidation coating on Ta-12W alloys and its formation mechanism

Yuting Hao, Zuoyan Ye, Lili Wang, Minheng Ye, Hui Dong, Chao Wang, Yunchen Du

Summary: This study focuses on the modification of PEO coatings on Ta-12W alloy using NH4F additive. The results show that ultra-low porosity coatings can be prepared by optimizing the NH4F content. The formation process of specific structures on the coating surface is discussed, and the effects of NH4F concentration and treatment duration on coating characteristics are investigated.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Pulsed laser cladding on IN718 alloy using pre-coated CrCoNi-TiC/SiC powders for enhancing wear resistance

Yuanzhuo Liu, Linjiang Chai, Tao Yang, Chaodan Hu, Chuanmei Wang, Guoqiang Xi

Summary: By employing a pulsed laser, laser cladding was performed on IN718 alloy pre-coated with CrCoNi-TiC/SiC powders and three defect-free coatings were successfully prepared. The addition of TiC and SiC powders generated fine carbides dispersed in the coatings and led to changes in grain and substructure morphologies, resulting in increased hardness and wear resistance.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Growth of Nb films on Cu for superconducting radio frequency cavities by direct current and high power impulse magnetron sputtering: A molecular dynamics and experimental study

M. Ghaemi, A. Lopez-Cazalilla, K. Sarakinos, G. J. Rosaz, C. P. A. Carlos, S. Leith, S. Calatroni, M. Himmerlich, F. Djurabekova

Summary: The use of high-power impulse magnetron sputtering can result in dense and uniform niobium films on all surfaces of superconducting rf cavities, as simulated and investigated in this study.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Electrophoretic coating of magnesium oxide on microarc-oxidized titanium and characterization of in vitro antibacterial activity and biocompatibility

Jiaheng Du, Xinli Fan, Dongqin Xiao, Wuxiang Wang, Yiran Yin, Zhong Li, Kui He, Yanfei Tan, Jiyuan Yan, Gangli Liu, Ke Duan

Summary: This study investigated the electrophoretic deposition (EPD) of magnesium oxide (MgO) coatings on micro-arc oxidized titanium (MAO-Ti) and evaluated their in vitro antibacterial properties and biocompatibility. The results showed that MgO coatings significantly reduced bacterial numbers and biofilm formation, while also demonstrating good cytocompatibility and induction of osteoblast mineralization.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Enhancing the fretting damage resistance of suspension plasma sprayed hydroxyapatite coating with Titania addition

Samiksha Moharana, Yuichi Otsuka, R. Gnanamoorthy

Summary: The addition of titania to HAp coatings improves their wear resistance and reduces damage to titanium implants caused by debris generation. This study evaluates the fretting wear resistance of titania-added HAp suspension plasma spray coating and finds that it exhibits reduced friction coefficient and increased wear resistance.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Potentiostatic preparation and in vitro characterization of functional hazenite conversion coatings on AZ31 magnesium alloy

Li-Ping Wu

Summary: The functional hazenite coating deposited on AZ31 Mg alloy showed improved roughness and hydrophilicity, enhanced biocompatibility, reduced degradation rate, and decreased susceptibility to stress corrosion cracking.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Long-lasting anti-bacterial face masks enabled by combining anti-bacterial materials and superhydrophobic coating

Ning Tian, Delei Xu, Jinfei Wei, Bucheng Li, Junping Zhang

Summary: This study reports the preparation of a superhydrophobic and anti-bacterial fabric for face masks. The fabric exhibits high superhydrophobicity and excellent moisture resistance, enabling functionality effectiveness in cold weather conditions. The fabric also demonstrates remarkable anti-bacterial activity against E. coli, attributed to the synergistic effect of superhydrophobicity and embedded ZnO nanoparticles. This superhydrophobic anti-bacterial fabric holds great potential for various practical applications in personal protective equipment, healthcare, and disease prevention.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Aluminide diffusion coatings for improving the pesting behavior of refractory metals

Katharina Beck, Anke S. Ulrich, Andreas K. Czerny, Emma M. H. White, Martin Heilmaier, Mathias C. Galetz

Summary: Refractory metal based alloys have great potential as structural materials for high-temperature applications due to their high melting points. However, they are prone to catastrophic oxidation at around 700 degrees C. This study investigated the effect of aluminium diffusion coatings on the oxidation resistance of pure molybdenum, niobium, tantalum, and tungsten. The results showed that the aluminization improved the oxidation behavior and decreased the oxide growth rate for molybdenum and tantalum.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Preparation and characterization of La-doped Y3Al5O12 as a potential protective coating material against CMAS corrosion

Wenwen Shuai, Haijun Dou, Zhichen Guan, Wei Qian, Zhibao Li, Yinqun Hua, Jie Cai

Summary: This study synthesized (Y1-xLax)3Al5O12 (x = 0, 0.1, 0.2, 0.3) materials by doping lanthanum ions, and found that the doped materials exhibited improved mechanical properties and thermal expansion coefficient, as well as enhanced resistance to CMAS corrosion. These materials have potential applications.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Microstructural, mechanical and corrosion characterization of (C-HA)SiCnws coating on AZ31 magnesium alloy surface

Xianglei Liu, Jiahui Ding, Wanbo Hou, Xinhao Shi, Tao Feng, Xiangyuan Meng, Shifeng Wen, Mingde Tong, Zhufeng Yue

Summary: A composite coating was developed to improve the adhesion, wear resistance, and corrosion resistance, which exhibited significant enhancements in these properties.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Mechanism study of composite co-deposited Cu/Co-Mo corrosion-resistant coating on 6061 Al alloy

Hongxuan Xing, Jidong Li, Xianwei Hu, Liang Tian, Renyun Zhang, Yiyong Wang

Summary: By depositing a Cu/Co-Mo corrosion-resistant plating layer on the surface of 6061 Al alloy, the bonding strength between the alloy and the plating layer can be improved and the corrosion resistance can be enhanced. The composite coating forms an obvious three-layer structure with Co-Mo coating exhibiting amorphous characteristics and Co3Mo phase composition. The composite coating improves the corrosion resistance and hardness of the substrate, effectively protecting the 6061 Al alloy.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

The impact-corrosion behavior of HVAF-sprayed monolayer and hierarchical Fe-based amorphous coatings

Fan Yang, Debin Wang, Tianrun Li, Baijun Yang, Suode Zhang, Jianqiang Wang

Summary: The impact-corrosion behavior of monolayer and hierarchical Fe-based amorphous coatings fabricated by HVAF was investigated in 3.5 wt% NaCl solution. The monolayer coating exhibits corrosion failure with increased impact energy, while the hierarchical coating shows improved resistance. However, at high impact energies, both coatings experience corrosion degradation.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Modified Ni-Al layer double hydroxides as nanoparticles for self-healing anti-corrosion composite coating

Shoaib Ahmad, Muddasir Nawaz, Solaiman Mohammad, R. A. Shakoor, Ramazan Kahraman, Talal Mohammed Al Tahtamouni

Summary: This research presents a novel self-healing anti-corrosion composite coating that demonstrates higher inhibition efficiency and self-healing effect, providing protection for metallic structures against corrosive environments.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Effects of silicon and neodymium additions on microstructures and mechanical properties of CoCrNi medium entropy alloy films

Hui-Wen Peng, Chun-Hway Hsueh

Summary: A series of (CoCrNi)100-x-ySixNdy medium entropy alloy films with manipulated metalloid element, Si, and rare earth element, Nd, were synthesized using magnetron three-target co-sputtering. The films showed different structures and mechanical properties with varying Si and Nd contents. The optimized mechanical properties were observed in the film with Si0.61Nd5.14, attributed to precipitation strengthening and grain refinement.

SURFACE & COATINGS TECHNOLOGY (2024)