4.8 Article

Defect Engineering in Few-Layer Phosphorene

期刊

SMALL
卷 14, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201704556

关键词

activation energy; defect emissions; infrared; localized excitons; phosphorene

资金

  1. ANU PhD student scholarship
  2. China Scholarship Council
  3. Australian Research Council
  4. ANU Major Equipment Committee

向作者/读者索取更多资源

Defect engineering in 2D phosphorene samples is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications, particularly at the infrared wavelength region. Defect engineering in a few-layer phosphorene sample via introduction of substrate trapping centers is realized. In a three-layer (3L) phosphorene sample, a strong photoluminescence (PL) emission peak from localized excitons at approximate to 1430 nm is observed, a much lower energy level than free excitonic emissions. An activation energy of approximate to 77 meV for the localized excitons is determined in temperature-dependent PL measurements. The relatively high activation energy supports the strong stability of the localized excitons even at elevated temperature. The quantum efficiency of localized exciton emission in 3L phosphorene is measured to be approximately three times higher than that of free excitons. These results could enable exciting applications in infrared optoelectronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据