4.7 Article

Microwave assisted construction of Ag-AgBr/reduced TiO2 nano-tube arrays photoelectrode and its enhanced visible light photocatalytic performance for degradation of 4-chlorphenol

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 193, 期 -, 页码 255-263

出版社

ELSEVIER
DOI: 10.1016/j.seppur.2017.10.068

关键词

Reduction TiO2 nano-tube arrays; Photoelectrode; Ag-AgBr; Photocatalysis; 4-chlorphenol

资金

  1. National Natural Science Foundation of China [51508254]
  2. Nature Science Foundation of Gansu Province of China [1506RJZA216]
  3. Fundamental Research Funds for the Central Universities [lzujbky-2015-137]
  4. Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure [SKL201509SIC]
  5. Open fund by Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials [KFK1502]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  7. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences

向作者/读者索取更多资源

There is an increasingly significant issue on decomposition of contaminants in modem chemical industry and environmental protection. Hence, in the study, to improve the catalytic of semiconductor materials, the silver silver bromide nanoparticles decorated reduced TiO2 nano-tube arrays photoelectrode (Ag-AgBr/r-TiO2 NTAs), which exhibits better photocatalytic (PC) performance in the wide range of solar spectra, was successfully fabricated by anodization process, followed by microwave reduction strategy. The partly reduced AgBr nano particles are decorated and both Ti3+ and states are simultaneously introduced in the TiO2 NTAs photo electrode inducing the formation of impurity energy level to form Ag-AgBr/r-TiO2 NTAs photoelectrode. Moreover, PC activity of Ag-AgBr/r-TiO2 NTAs photoelelctrode was measured by degradation of 4-chlorphenol (4-CP). Results suggest that Ag-AgBr/r-TiO2 NTAs photoelectrode exhibits higher PC activity (99.9%) than that of other samples within 120 min illumination. The well combination of surface plasmons Ag-AgBr nanoparticles and r-TiO2 NTAs was responsible for the enhancing of PC, and the recombination of photo-generated electrons and holes can simultaneously be inhibited. Thus, Ag-AgBr nanoparticles and Ti3+ exert huge influence on the PC and photoelectrochemical properties of Ag-AgBr/r-TiO2 NTAs photoelectrode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据