4.7 Article

Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 635, 期 -, 页码 1360-1366

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.03.260

关键词

Dissimilatory nitrate reduction to ammonium; Constructed wetlands; Nitrogen removal; COD removal; Retention time

资金

  1. National Natural Science Foundation of China [41501520]
  2. Agricultural Science and Technology Innovation Foundation of Shandong Academy of Agriculture Sciences [CXGC2016A08]
  3. Science and Technology Development Foundation of Department of Science & Technology of Shandong Province [2014GGH210001]
  4. Innovative Team Building Foundation of Shandong Province Department of Agriculture [SDAIT-11-06]

向作者/读者索取更多资源

Horizontal subsurface constructed wetlands (HSSF-CWs) planted with Phragmites australis were established to examine the effect of influent nitrogen loads on the removal efficiencies of nitrogen and chemical oxygen demand (COD) during different plant growth periods of plants. Under low influent nitrogen loads, most of the dissolved oxygen was consumed during the oxidation of organic matter in the wetland systems, and a dissimilatory nitrate reduction to ammonium (DNRA) may have occurred in HSSF-CWs when excessive amounts of organic matter were present, which limited the nitrification of ammonium nitrogen (NH4-N) and hindered the NH4-N removal. An increase in the influent nitrogen loads resulted in an enhancement of the removal efficiencies of NH4-N, nitrate nitrogen (NO3-N) and total nitrogen (TN) during the same growth period, except for NO3-N under the highest influent nitrogen loads, whereas fluctuations occurred for the COD removal efficiency. Compared with the rapid growth period, the removal efficiency of NH4-N, NO3-N and TN increased during the mature period; however, the COD removal efficiency decreased. The change of COD: N (COD: TN in wastewater) ratios with retention times indicated the sufficiency or deficiency of organicmatter as an electron donor in the wetland systems. The changes in the pH value and oxidation-reduction potential (ORP) indirectly demonstrated that many factors affected the effluent pH value and ORP, such as retention time, influent loads, plants and wetland substrate, and microorganisms. In this study, the changes of ORP also illustrated that the dissolved oxygen concentrations decreased with increasing retention time in the HSSF-CWs; however, no significant increase in the ORP was observed during the two growth periods. (C) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据