4.7 Article

Co-exposure of silica nanoparticles and methylmercury induced cardiac toxicity in vitro and in vivo

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 631-632, 期 -, 页码 811-821

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.03.107

关键词

Silica nanoparticles; Methylmercury; Co-exposure; Cardiac toxicity

资金

  1. National Natural Science Foundation of China [81230065, 81571130090, 81673204]
  2. Scientific Research Common Program of Beijing Municipal Commission of Education [KM201610025006]

向作者/读者索取更多资源

The released nanoparticles into environment can potentially interact with pre-existing pollution, maybe causing higher toxicity. As such, assessment of their joint toxic effects is necessary. This study was to investigate the co-exposure cardiac toxicity of silica nanoparticles (SiNPs) and methylmercury (MeHg). Factorial design was used to determine the potential joint action type. In vitro study, human cardiomyocytes (AC16) were exposed to SiNPs and MeHg alone or the combination. Higher toxicity was observed on cell viability, cell membrane damage in co-exposure compared with single exposure and control. The co-exposure enhanced the ROS, MDA generation and reduced the activity of SOD and GSH-Px. In addition, the co-exposure induced much higher cellular apoptotic rate in AC16. In vivo study, after SD rats exposed to SiNPs and MeHg and their mixture by intratracheal instillation for 30 days, pathological changes (myocardial interstitial edema) of heart were occurred in co-exposure compared with single exposure and control. Moreover obvious ultra-structural changes, including myofibril disorder, myocardial gap expansion, and mitochondrial damage were observed in co-exposure group. The activity of myocardial enzymes, including CK-MB, ANP, BNP and cTnT, were significantly elevated in co-exposure group of rat serum. Meanwhile, the cardiac injury-linked proteins expression showed an increase in SERCA2 and decreased levels of cTnT, ANP and BNP in co-exposure group. Factorial design analysis demonstrated that additive and synergistic interactions were responsible for the co-exposure cardiac toxicity in vitro and vivo. In summary, our results showed severe cardiac toxicity induced by co-exposure of SiNPs and MeHg in both cardiomycytes and heart. It will help to clarify the potential cardiovascular toxicity in regards to combined exposure pollutions. (C) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据