4.2 Article

Design of Copper and Titanium Dioxide Nanoparticles Doped with Reduced Graphene Oxide for Hydrogen Evolution by Water Splitting

期刊

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
卷 92, 期 5, 页码 968-975

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0036024418050369

关键词

-

资金

  1. Scientific Research Foundation of Shaanxi University of Science Technology [BJ14-24]
  2. Education Department of Shaanxi [15JK1105]

向作者/读者索取更多资源

TiO2-graphene (P25-GR, PG) nanocomposite was fabricated from P25 titania and graphite oxide by hydrothermal method, and then Cu nanoparticles (Cu NPs) were assembled in P25-GR composite (Cu-P25-GR, CPG) under microwave-assisted chemical reduction. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption (UV-Vis) and Raman spectroscopies. Cu NPs were well dispersed on the surface of PG and are in metallic state. The ternary Cu-P25-GR (CPG) nanocomposites show an extended light absorption range and more efficient charge separation properties compared to binary P25-GR (PG) composite. Methylene blue photodegradation experiment proved that surface plasmon resonance (SPR) phenomenon had an effect on photoreaction efficiency. The corresponding hydrogen evolution rate for CPG prepared using 0.002 M Cu(NO3)(2) solution was 10 times higher than with pure P25, and 2.3 times higher than with PG in the same test conditions. The improved photocatalytic performance can be attributed to the presence of GR in the prepared composite and to the SPR effect, leading to the longer lifetime of photogenerated electronhole pairs and faster interfacial charge transfer rate. We expect that our work would be useful for the further exploration of GR-based nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据