4.7 Article

Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants

期刊

RENEWABLE ENERGY
卷 119, 期 -, 页码 809-819

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2017.10.057

关键词

Nanofluids; Concentrating solar power; Thermal properties; Heat transfer fluids

资金

  1. Ministerio de Economia y Competitividad of the Spanish Government [ENE2014-58085-R]
  2. VPPI-US

向作者/读者索取更多资源

The paper presents an analysis of the properties of TiO2-based nanofluids such as their physical stability and heat transfer performance. The nanofluids were prepared with a eutectic mixture of diphenyl oxide and biphenyl with the addition of TiO2 nanoparticles and 1-octadecanethiol (ODT), used as a surfactant. The nanofluids were tested to determine their thermal and physical properties, such as stability, density, viscosity. The introduction of TiO2 nanoparticles accompanied with equal quantity of ODT was seen to sharply enhance the properties of the system in terms of heat transfer in concentrating solar power (CSP) plants. In particular, the system became stable after 3-5 days, and the settlement rate depended on the nanoparticle concentration. There was a slight increase in density and viscosity of no more than 0.12% and 4.85%, respectively. The thermal properties improved significantly, up to 52.7% for the isobaric specific heat and up to 25.8% for the thermal conductivity. The dimensionless Figure of Merit parameter (FoM), which is based on the Dittus-Boelter correlation, was used as a criterion for evaluating efficiency. At all the temperatures tested the nanofluid with 2.5.10(-4) wt% (volume fraction of 2.44%) of TiO2 performed best, increasing the efficiency by up to 35.4% with regard to the pure heat transfer fluid (HTF) used in CSP plants. Thus, nanofluids based on TiO2 nanoparticles seem to be a promising alternative to HTFs in CSP plants. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据