4.8 Article

Robust, linear correlations between growth rates and β-lactam-mediated lysis rates

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1719504115

关键词

beta-lactams; systems biology; quantitative biology; antibiotic resistance

资金

  1. NIH [R01GM098642, R01GM110494, R24DK110492]
  2. David and Lucile Packard Fellowship
  3. Army Research Office

向作者/读者索取更多资源

It is widely acknowledged that faster-growing bacteria are killed faster by beta-lactam antibiotics. This notion serves as the foundation for the concept of bacterial persistence: dormant bacterial cells that do not grow are phenotypically tolerant against beta-lactam treatment. Such correlation has often been invoked in the mathematical modeling of bacterial responses to antibiotics. Due to the lack of thorough quantification, however, it is unclear whether and to what extent the bacterial growth rate can predict the lysis rate upon beta-lactam treatment under diverse conditions. Enabled by experimental automation, here we measured >1,000 growth/killing curves for eight combinations of antibiotics and bacterial species and strains, including clinical isolates of bacterial pathogens. We found that the lysis rate of a bacterial population linearly depends on the instantaneous growth rate of the population, regardless of how the latter is modulated. We further demonstrate that this predictive power at the population level can be explained by accounting for bacterial responses to the antibiotic treatment by single cells. This linear dependence of the lysis rate on the growth rate represents a dynamic signature associated with each bacterium-antibiotic pair and serves as the quantitative foundation for designing combination antibiotic therapy and predicting the population-structure change in a population with mixed phenotypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据