4.7 Article

Synthesis of Cu-Al LDH nanofluid and its application in spray cooling heat transfer of a hot steel plate

期刊

POWDER TECHNOLOGY
卷 335, 期 -, 页码 285-300

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2018.05.004

关键词

Cu-Al LDH; Nanofluid; Spray cooling; Cooling rate; Average heat flux; Average heat transfer coefficient

向作者/读者索取更多资源

In the current study, authors have synthesized Cu-Al Layered Double Hydroxide nanofluid at different molar ratios of Cu and Al by using co-precipitation technique and utilized this as a coolant in a pressure atomized spray to achieve high cooling rates in the temperature range of 900-600 degrees C for a 6 mm thick steel plate. The study initially focuses on the effect of Cu: Al molar ratio variation on thermal conductivity, stability as well as its heat transfer potential in steel quenching. Post thermal conductivity and stability analysis, spray cooling experiments were conducted in two parts. The first part involves optimization of Cu: Al molar ratio by varying the ratio (Cu: Al = 2:1, 4:1 and 6:1) at a fixed nanofluid concentration (120 ppm) to select the best Cu: Al molar ratio based on heat transfer results. The results show that the highest cooling rate and average heat flux were achieved at a Cu and Al molar ratio of 4:1 among all molar ratio combinations. Once, the optimized molar ratio is selected, the second part of the spray cooling experiments was performed to study the effect of nanofluid concentration variation (40-240 ppm, at an optimized molar ratio of Cu: Al = 4:1) on spray cooling results. With respect to concentration optimization, the maximum cooling rate of 168.6 degrees C/s was attained at a concentration of 160 ppm which is 26% higher than what was achieved by normal water spray. Results obtained from the spray cooling experiments were further verified by the thermal conductivity analysis where highest enhancement of 15.17% was also observed at 160 ppm nanofluid concentration. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据