4.8 Article

Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas

期刊

PLANT CELL
卷 30, 期 8, 页码 1824-1847

出版社

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.18.00361

关键词

-

资金

  1. CEA (Irtelis) international PhD studentship
  2. China Scholarship Council
  3. French Agence Nationale pour la Recherche (ANR JCJC MUsCA)
  4. A*MIDEX project - Investissements d'Avenir
  5. European Union Regional Developing Fund
  6. Region Provence Alpes Cote d'Azur
  7. French Ministry of Research
  8. CEA
  9. European Union [664621, 739582, 664620]

向作者/读者索取更多资源

Plants and algae must tightly coordinate photosynthetic electron transport and metabolic activities given that they often face fluctuating light and nutrient conditions. The exchange of metabolites and signaling molecules between organelles is thought to be central to this regulation but evidence for this is still fragmentary. Here, we show that knocking out the peroxisome-located MALATE DEHYDROGENASE2 (MDH2) of Chlamydomonas reinhardtii results in dramatic alterations not only in peroxisomal fatty acid breakdown but also in chloroplast starch metabolism and photosynthesis. mdh2 mutants accumulated 50% more storage lipid and 2-fold more starch than the wild type during nitrogen deprivation. In parallel, mdh2 showed increased photosystem II yield and photosynthetic CO2 fixation. Metabolite analyses revealed a > 60% reduction in malate, together with increased levels of NADPH and H2O2 in mdh2. Similar phenotypes were found upon high light exposure. Furthermore, based on the lack of starch accumulation in a knockout mutant of the H2O2-producing peroxisomal ACYL-COA OXIDASE2 and on the effects of H2O2 supplementation, we propose that peroxisome-derived H2O2 acts as a regulator of chloroplast metabolism. We conclude that peroxisomal MDH2 helps photoautotrophs cope with nitrogen scarcity and high light by transmitting the redox state of the peroxisome to the chloroplast by means of malate shuttle-and H2O2-based redox signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据