4.7 Article

Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at √sNN=2.76 TeV

期刊

PHYSICS LETTERS B
卷 777, 期 -, 页码 151-162

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physletb.2017.12.021

关键词

-

资金

  1. Grid centres
  2. Worldwide LHC Computing Grid (WLCG) collaboration
  3. National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), Armenia
  4. State Committee of Science, Armenia
  5. World Federation of Scientists (WFS), Armenia
  6. Austrian Academy of Sciences, Austria
  7. Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria
  8. Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan
  9. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil
  10. Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
  11. Financiadora de Estudos e Projetos (Finep), Brazil
  12. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil
  13. Ministry of Science AMP
  14. Technology of China (MSTC), China
  15. National Natural Science Foundation of China (NSFC), China
  16. Ministry of Education of China (MOEC), China
  17. Ministry of Science, Education and Sport, Croatia
  18. Croatian Science Foundation, Croatia
  19. Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic
  20. Danish Council for Independent Research - Natural Sciences, Denmark
  21. Carlsberg Foundation, Denmark
  22. Danish National Research Foundation (DNRF), Denmark
  23. Helsinki Institute of Physics (HIP), Finland
  24. Commissariat a l'Energie Atomique (CEA), France
  25. Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), France
  26. Centre National de la Recherche Scientifique (CNRS), France
  27. Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF), Germany
  28. GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Germany
  29. General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece
  30. National Research, Development and Innovation Office, Hungary
  31. Department of Atomic Energy, Government of India (DAE), New Delhi, India
  32. Council of Scientific and Industrial Research (CSIR), New Delhi, India
  33. Indonesian Institute of Science, Indonesia
  34. Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Italy
  35. Istituto Nazionale di Fisica Nucleare (INFN), Italy
  36. Institute for Innovative Science and Technology, Japan
  37. Nagasaki Institute of Applied Science (IIST), Japan
  38. Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan
  39. Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  40. Consejo Nacional de Ciencia (CONACYT) y Tecnologia, through Fondo de Cooperacion Internacional en Ciencia y Tecnologia (FONCICYT), Mexico
  41. Direccion General de Asuntos del Personal Academico (DGAPA), Mexico
  42. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands
  43. Research Council of Norway, Norway
  44. Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan
  45. Pontificia Universidad Catolica del Peru, Peru
  46. Ministry of Science and Higher Education and National Science Centre, Poland
  47. Korea Institute of Science and Technology Information , Republic of Korea
  48. National Research Foundation of Korea (NRF), Republic of Korea
  49. Ministry of Education and Scientific Research, Romania
  50. Institute of Atomic Physics, Romania
  51. Romanian National Agency for Science, Technology and Innovation, Romania, Romania
  52. Joint Institute for Nuclear Research (JINR), Russia
  53. Ministry of Education and Science of the Russian Federation, Russia
  54. National Research Centre Kurchatov Institute, Russia
  55. Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia
  56. National Research Foundation of South Africa, South Africa
  57. Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba
  58. Ministerio de Ciencia e Innovacion, Spain
  59. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Spain
  60. Swedish Research Council (VR), Sweden
  61. Knut AMP
  62. Alice Wallenberg Foundation (KAW), Sweden
  63. European Organization for Nuclear Research, Switzerland
  64. National Science and Technology Development Agency (NSDTA), Thailand
  65. Suranaree University of Technology (SUT), Thailand
  66. Office of the Higher Education Commission under NRU project of Thailand, Thailand
  67. Turkish Atomic Energy Agency (TAEK), Turkey
  68. National Academy of Sciences of Ukraine, Ukraine
  69. Science and Technology Facilities Council (STFC), United Kingdom
  70. National Science Foundation of the United States of America (NSF), United States of America
  71. U.S. Department of Energy, Office of Nuclear Physics (DOE NP), United States of America
  72. STFC [2014 STFC Nuclear Physics CG, 1657698, ST/P005438/1, ST/M001601/1, ST/J000108/1, 2017 STFC Nuclear Physics CG, 1843572, ST/P004598/1, 1796881, ST/L005670/1, ST/M001598/1] Funding Source: UKRI
  73. Direct For Mathematical & Physical Scien
  74. Division Of Physics [1613118, 1625081] Funding Source: National Science Foundation
  75. Science and Technology Facilities Council [2017 STFC Nuclear Physics CG, 1796881, 1657698, ST/P004598/1, ST/L005670/1, ST/P005438/1, ST/M001598/1, GRIDPP, 1843572] Funding Source: researchfish
  76. Grants-in-Aid for Scientific Research [17H01122, 17H02876] Funding Source: KAKEN

向作者/读者索取更多资源

In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v(2) reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two-and three-particle correlations in Pb-Pb collisions at root s(NN) = 2.76 TeV. The two-particle correlator < cos(phi(alpha) - phi(ss))>, calculated for different combinations of charges alpha and beta, is almost independent of v(2) (for a given centrality), while the three-particle correlator < cos(phi(alpha) + phi(beta) - 2 Psi(2))> scales almost linearly both with the event v(2) and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v(2) points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level. (c) 2017 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据