4.6 Article

Posner molecules: from atomic structure to nuclear spins

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 18, 页码 12373-12380

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp07720c

关键词

-

资金

  1. Heising-Simons Foundation
  2. National Science Foundation [DMR-14-04230, ACI-1548562]
  3. Gordon and Betty Moore Foundation
  4. Center for Scientific Computing from the CNSI
  5. MRL: an NSF MRSEC [DMR-1720256]
  6. NSF [CNS-0960316]

向作者/读者索取更多资源

We investigate Posner molecules'', calcium phosphate clusters with chemical formula Ca-9(PO4)(6). Originally identified in hydroxyapatite, Posner molecules have also been observed as free-floating molecules in vitro. The formation and aggregation of Posner molecules have important implications for bone growth, and may also play a role in other biological processes such as the modulation of calcium and phosphate ion concentrations within the mitochondrial matrix. In this work, we use a first-principles computational methodology to study the structure of Posner molecules, their vibrational spectra, their interactions with other cations, and the process of pairwise bonding. Additionally, we show that the Posner molecule provides an ideal environment for the six constituent 31P nuclear spins to obtain very long spin coherence times. In vitro, the spins could provide a platform for liquid-state nuclear magnetic resonance quantum computation. In vivo, the spins may have medical imaging applications. The spins have also been suggested as neural qubits'' in a proposed mechanism for quantum processing in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Applied

Piezoelectric effect and polarization switching in Al1-xScxN

Haochen Wang, Nicholas Adamski, Sai Mu, Chris G. van de Walle

Summary: This study provides a detailed analysis of the spontaneous and piezoelectric polarization behaviors of aluminum nitride alloy with Sc addition. It is found that the virtual crystal approximation produces accurate results for polarization but falls short in describing the phase stability of the alloy. Additionally, the internal-strain contribution dominantly enhances the piezoelectric properties induced by Sc, with the value of u increasing with scandium concentration, bringing the alloy closer to a layered hexagonal structure locally.

JOURNAL OF APPLIED PHYSICS (2021)

Article Physics, Applied

Epitaxial ScxAl1-xN on GaN exhibits attractive high-K dielectric properties

Joseph Casamento, Hyunjea Lee, Takuya Maeda, Ved Gund, Kazuki Nomoto, Len van Deurzen, Wesley Turner, Patrick Fay, Sai Mu, Chris G. van de Walle, Amit Lal, Huili (Grace) Xing, Debdeep Jena

Summary: Epitaxial ScxAl1-xN thin films grown on metal polar GaN substrates exhibit high relative dielectric permittivity, the largest among existing nitride materials. The films also have polarization discontinuity, which can be utilized for extending transistor operation in power electronics and high-speed microwave applications.

APPLIED PHYSICS LETTERS (2022)

Article Physics, Applied

Defect tolerance in halide perovskites: A first-principles perspective

Xie Zhang, Mark E. Turiansky, Jimmy-Xuan Shen, Chris G. van de Walle

Summary: This Perspective critically discusses the defect tolerance in halide perovskites based on first-principles calculations. It shows that halide perovskites are not defect tolerant and suffer from defect-assisted nonradiative recombination, with comparable or higher nonradiative recombination rates than conventional semiconductors. The importance of accurate defect properties and defect engineering in improving the efficiency of perovskite solar cells is highlighted.

JOURNAL OF APPLIED PHYSICS (2022)

Article Physics, Applied

Anisotropic-strain-enhanced hole mobility in GaN by lattice matching to ZnGeN2 and MgSiN2

Joshua Leveillee, Samuel Ponce, Nicholas L. Adamski, Chris G. Van de Walle, Feliciano Giustino

Summary: The possibility of improving the hole mobility of GaN by epitaxial matching to ZnGeN2 and MgSiN2 is explored. Calculations show that lattice matching with these materials can lead to the inversion of certain hole bands and significantly increase hole mobility.

APPLIED PHYSICS LETTERS (2022)

Article Materials Science, Multidisciplinary

Phase stability of (AlxGa1-x)2O3 polymorphs: A first-principles study

Sai Mu, Chris G. Van de Walle

Summary: This study uses density functional theory to assess the phase stability of monoclinic Ga2O3 and (AlxGa1-x)(2)O-3 alloys. It finds that the gamma and kappa phases of (AlxGa1-x)(2)O-3 have the lowest enthalpy of formation at 62.5% and 50% Al concentrations, respectively. At finite temperature, lattice vibrations tend to stabilize the kappa phase and destabilize the alpha and gamma phases, with the configurational entropy of the gamma phase playing a substantial role in stabilizing it.

PHYSICAL REVIEW MATERIALS (2022)

Article Physics, Applied

Microscopic Origin of Polarization Charges at GaN/(Al,Ga)N Interfaces

Su-Hyun Yoo, Mira Todorova, Jorg Neugebauer, Chris G. Van de Walle

Summary: GaN/(Al, Ga)N heterojunctions are crucial for high-electron-mobility transistors. The density of the two-dimensional electron gas (2DEG) on the GaN side is significantly enhanced by the strong polarization fields at the interface. The source of the electrons in the 2DEG is intrinsic to the overall structure and the negative charge is balanced by fixed charge on the surface, rather than surface states.

PHYSICAL REVIEW APPLIED (2023)

Article Quantum Science & Technology

Coherent Control of a Nuclear Spin via Interactions with a Rare-Earth Ion in the Solid State

Mehmet T. Uysal, Mouktik Raha, Songtao Chen, Christopher M. Phenicie, Salim Ourari, Mengen Wang, Chris G. Van de Walle, Viatcheslav V. Dobrovitski, Jeff D. Thompson

Summary: In this work, coherent coupling between the electron spin of a single Er3+ ion and a single I = 1/2 nuclear spin in the solid-state host crystal, which is a fortuitously located proton (1H), is demonstrated. The nuclear spin is controlled using dynamical-decoupling sequences applied to the electron spin, allowing for one- and two-qubit gate operations. The longer coherence time of the nuclear spin, compared to the electron spin, is crucial for combining long-lived nuclear spin quantum registers with telecom-wavelength emitters for long-distance quantum repeaters.

PRX QUANTUM (2023)

Article Physics, Multidisciplinary

Trap-Assisted Auger-Meitner Recombination from First Principles

Fangzhou Zhao, Mark E. Turiansky, Audrius Alkauskas, Chris G. Van de Walle

Summary: Trap-assisted Auger-Meitner recombination is highlighted as a dominant nonradiative process in wide-band-gap materials, and a first-principles methodology is presented to determine the rates of this process in semiconductors or insulators due to defects or impurities.

PHYSICAL REVIEW LETTERS (2023)

Article Materials Science, Multidisciplinary

Migration of Ga vacancies and interstitials in ?-Ga2O3

Ymir K. Frodason, Joel B. Varley, Klaus Magnus H. Johansen, Lasse Vines, Chris G. Van de Walle

Summary: Pathways and energy barriers for the migration of Ga vacancies (VGa) and Ga interstitials (Gai) in-Ga2O3 have been studied using hybrid functional calculations and the nudged elastic band method. A mechanism for the transformation of VGa between different split configurations has been described. The overall migration barriers for VGa and Gai in different crystal directions have been determined. The results provide insights into the thermally activated recovery processes in irradiated material.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

First-principles study of quantum defect candidates in beryllium oxide

Yubi Chen, Mark E. Turiansky, Chris G. Van de Walle

Summary: This study conducted comprehensive investigations on native point defects in beryllium oxide (BeO) using density functional theory. The stability and potential applications of different defects were analyzed, and suitable candidates for quantum defects were identified.

PHYSICAL REVIEW B (2022)

Article Quantum Science & Technology

Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride

Raj N. Patel, David A. Hopper, Jordan A. Gusdorff, Mark E. Turiansky, Tzu-Yung Huang, Rebecca E. K. Fishman, Benjamin Porat, Chris G. Van de Walle, Lee C. Bassett

Summary: By using photon emission correlation spectroscopy, we revealed the optical dynamics of quantum emitters in hexagonal boron nitride. The experimental results showed the existence of quantum emitters with ideal single-photon emission and their photoluminescence emission lineshapes were consistent with individual vibronic transitions. However, polarization-resolved excitation and emission revealed the role of multiple optical transitions, and photon emission correlation spectroscopy revealed the complicated optical dynamics associated with excitation and relaxation.

PRX QUANTUM (2022)

Proceedings Paper Engineering, Electrical & Electronic

First-principles studies of diffusion in gallium oxide

Mengen Wang, Sai Mu, Chris G. Van de Walle

Summary: This paper discusses the diffusion behavior of dopants and point defects in monoclinic gallium oxide, as well as the diffusion of hydrogen in gallium oxide. The results provide important guidance for controlling doping in gallium oxide and its alloys.

OXIDE-BASED MATERIALS AND DEVICES XIII (2022)

Article Materials Science, Multidisciplinary

Role of carbon and hydrogen in limiting n-type doping of monoclinic (AlxGa1-x)2O3

Sai Mu, Mengen Wang, Joel B. Varley, John L. Lyons, Darshana Wickramaratne, Chris G. Van de Walle

Summary: We used hybrid density functional calculations to analyze n-type doping in monoclinic (AlxGa1-x)(2)O-3 alloys. Our study focused on the impact of silicon, carbon, and hydrogen as impurities in metal-organic chemical vapor deposition (MOCVD) and their effect on the structural properties and charge-state transition levels of the alloys.

PHYSICAL REVIEW B (2022)

Article Chemistry, Multidisciplinary

All-inorganic halide perovskites as candidates for efficient solar cells

Xie Zhang, Mark E. Turiansky, Chris G. Van de Walle

Summary: Hybrid perovskites exhibit higher efficiencies than all-inorganic counterparts in photovoltaic applications, but organic cations can introduce more nonradiative recombination centers that affect performance. All-inorganic halide perovskites have better stability of the perovskite phase and hold promise for high-efficiency optoelectronic applications. These critical insights may prevent all-inorganic halide perovskites from being disregarded as potentially strong candidates for solar cell materials.

CELL REPORTS PHYSICAL SCIENCE (2021)

Article Materials Science, Multidisciplinary

First-principles study of electron transport in ScN

Sai Mu, Andrew J. E. Rowberg, Joshua Leveillee, Feliciano Giustino, Chris G. Van de Walle

Summary: In this study, we investigated the conduction-band structure and electron mobility in rocksalt ScN using density functional theory. Our findings reveal a significant enhancement of electron mobility at high carrier concentrations. We also show how strain engineering can increase electron mobility, with different effects on (111) and (100) oriented ScN films.

PHYSICAL REVIEW B (2021)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)