4.6 Article

Singlet-triplet energy gaps and the degree of diradical character in binuclear copper molecular magnets characterized by spin-flip density functional theory

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 19, 页码 13127-13144

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp07356a

关键词

-

资金

  1. Department of Energy [DE-FG02-05ER15685]

向作者/读者索取更多资源

Molecular magnets, defined here as organic polyradicals, can be used as building blocks in the fabrication of novel and structurally diverse magnetic light-weight materials. We present a theoretical investigation of the lowest spin states of several binuclear copper diradicals. In contrast to previous studies, we consider not only the energetics of the low-lying states (which are related to the exchangecoupling parameter within the Heisenberg-Dirac-van-Vleck model), but also the character of the diradical states themselves. We use natural orbitals, their occupations, and the number of effectively unpaired electrons to quantify bonding patterns in these systems. We compare the performance of spin-flip time-dependent density functional theory (SF-TDDFT) using various functionals and effective core potentials against the wave function based approach, equation-of-motion spin-flip coupled-cluster method with single and double substitutions (EOM-SF-CCSD). We find that SF-TDDFT paired with the PBE50 and B5050LYP functionals performs comparably to EOM-SF-CCSD, with respect to both singlettriplet gaps and states' characters. Visualization of frontier natural orbitals shows that the unpaired electrons are localized on copper centers, in some cases exhibiting slight through-bond interaction via copper d-orbitals and p-orbitals of neighboring ligand atoms. The analysis reveals considerable interactions between the formally unpaired electrons in the antiferromagnetic diradicaloids, meaning that they are poorly described by the Heisenberg-Dirac-van-Vleck model. Thus, for these systems the experimentally derived exchange-coupling parameters are not directly comparable with the singlettriplet gaps. This explains systematic discrepancies between the computed singlet-triplet energy gaps and the exchange-coupling parameters extracted from experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据