4.5 Article

Cyclone separation in a supercritical water circulating fluidized bed reactor for coal/biomass gasification: Structural design and numerical analysis

期刊

PARTICUOLOGY
卷 39, 期 -, 页码 55-67

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.partic.2017.08.005

关键词

Cyclone; Structural design; Supercritical water-solid flow; Separation performance; Circulating fluidized bed; Computational fluid dynamics

资金

  1. Shaanxi Science and Technology Coordinate Innovation Project Plan [2016KTZDGY08-02]
  2. National Nature Science Foundation of China [51676158]
  3. National Key Research and Development Program of China [2016YFB0600100]

向作者/读者索取更多资源

A new concept of a supercritical water (SCW) circulating fluidized bed reactor is proposed to produce hydrogen from coal/biomass gasification. The cyclone is a key component of the reactor system. In this paper, cyclones with a single circular inlet (SCI) or a double circular inlet (DCI) were designed to adapt to the supercritical conditions. We evaluated the separation performance of the two cyclones using numerical simulations. A three-dimensional Reynolds stress model was used to simulate the turbulent flow of the fluid, and a stochastic Lagrangian model was used to simulate the particle motion. The flow fields of both cyclones were three-dimensionally unsteady and similar to those of traditional gas-solid cyclones. Secondary circulation phenomena were discovered and their influence on particle separation was estimated. Analyzing the distribution of the turbulence kinetic energy revealed that the most intensive turbulence existed in the zone near the vortex finder while the flow in the central part was relatively stable. The particle concentration distribution was non-uniform because of centrifugal forces. The distribution area can be divided into three parts according to the motion of the particles. In addition, the separation efficiency of both cyclones increased with the inlet SCW velocity. Because of its perturbance flow, the DCI separator had higher separation efficiency than the SCI separator under comparable simulations. However, this was at the expense of a higher pressure drop across the cyclone. (C) 2018 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据