4.5 Article

Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD

期刊

HUMAN MOLECULAR GENETICS
卷 24, 期 14, 页码 3982-3993

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddv136

关键词

-

资金

  1. CIHR Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK084097, R01DK084097] Funding Source: Medline

向作者/读者索取更多资源

In this study, we identified a BET bromodomain (BRD) protein, Brd4, not only as a novel epigenetic regulator of autosomal dominant polycystic kidney disease (ADPKD) but also as a novel client protein of Hsp90. We found that Brd4 was upregulated in Pkd1 mutant mouse renal epithelial cells and tissues. This upregulation of Brd4 appears to result from the chaperone activity of Hsp90 and escape proteasomal degradation. We further identify that Brd4 is an upstream regulator of the expression of c-Myc which has been upregulated in all rodent models of PKD and ADPKD patients with unknown mechanism. Inhibition of Brd4 in Pkd1 mutant renal epithelial cells with JQ1, a selective small-molecular inhibitor of BET BRD protein(s), (1) decreased the levels of c-Myc mRNA and protein; (2) increased the levels of p21 mRNA and protein, which was transcriptionally repressed by c-Myc; (3) decreased the phosphorylation of Rb; and (4) decreased cystic epithelial cell proliferation as shown by inhibition of S-phase entry. Most importantly, treatment with JQ1 strikingly delayed cyst growth and kidney enlargement, and preserved renal function in two early stage genetic mouse strains with Pkd1 mutations. This study not only provides one of the mechanisms of how c-Myc is upregulated in PKD but also suggests that targeting Brd4 with JQ1 may function as a novel epigenetic approach in ADPKD. The unraveled link between Brd4 and Hsp90 in ADPKD may also be a general mechanism for the upregulation of Brd4 in cancer cells and opens up avenues for combination therapies against ADPKD and cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据