4.7 Article

Intelligence-related differences in the asymmetry of spontaneous cerebral activity

期刊

HUMAN BRAIN MAPPING
卷 36, 期 9, 页码 3586-3602

出版社

WILEY
DOI: 10.1002/hbm.22864

关键词

intelligence; brain asymmetry; resting state; connectivity; homotopy; individual differences

向作者/读者索取更多资源

Recent evidence suggests the spontaneous BOLD signal synchronization of corresponding interhemispheric, homotopic regions as a stable trait of human brain physiology, with emerging differences in such organization being also related to some pathological conditions. To understand whether such brain functional symmetries play a role into higher-order cognitive functioning, here we correlated the functional homotopy profiles of 119 healthy subjects with their intelligence level. Counterintuitively, reduced homotopic connectivity in above average-IQ versus average-IQ subjects was observed, with significant reductions in visual and somatosensory cortices, supplementary motor area, rolandic operculum, and middle temporal gyrus, possibly suggesting that a downgrading of interhemispheric talk at rest could be associated with higher cognitive functioning. These regions also showed an increased spontaneous synchrony with medial structures located in ipsi- and contralateral hemispheres, with such pattern being mostly detectable for regions placed in the left hemisphere. The interactions with age and gender have been also tested, with different patterns for subjects above and below 25 years old and less homotopic connectivity in the prefrontal cortex and posterior midline regions in female participants with higher IQ scores. These findings support prior evidence suggesting a functional role for homotopic connectivity in human cognitive expression, promoting the reduction of synchrony between primary sensory regions as a predictor of higher intelligence levels. Hum Brain Mapp 36:3586-3602, 2015. (c) 2015 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据