4.8 Article

Metallic supercurrent field-effect transistor

期刊

NATURE NANOTECHNOLOGY
卷 13, 期 9, 页码 802-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41565-018-0190-3

关键词

-

资金

  1. European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant [615187]
  2. MIUR-FIRB2013-Project Coca [RBFR1379UX]
  3. Tuscany Region under the FARFAS 2014 project SCIADRO
  4. Marie Curie Individual Fellowship MSCAIFEF-ST [660532]
  5. European Union FP7/2007-2013 under REA grant [630925-COHEAT]

向作者/读者索取更多资源

In their original formulation of superconductivity, the London brothers predicted(1) the exponential suppression of an electrostatic field inside a superconductor over the so-called London penetration depth(2-4), lambda(L). Despite a few experiments indicating hints of perturbation induced by electrostatic fields(5-7), no clue has been provided so far on the possibility to manipulate metallic superconductors via the field effect. Here, we report field-effect control of the supercurrent in all-metallic transistors made of different Bardeen-Cooper-Schrieffer superconducting thin films. At low temperature, our field-effect transistors show a monotonic decay of the critical current under increasing electrostatic field up to total quenching for gate voltage values as large as +/- 40 V in titanium-based devices. This bipolar field effect persists up to similar to 85% of the critical temperature (similar to 0.41 K), and in the presence of sizable magnetic fields. A similar behaviour is observed in aluminium thin-film field-effect transistors. A phenomenological theory accounts for our observations, and points towards the interpretation in terms of an electric-fieldinduced perturbation propagating inside the superconducting film. In our understanding, this affects the pairing potential and quenches the supercurrent. These results could represent a groundbreaking asset for the realization of all-metallic superconducting field-effect electronics and leading-edge quantum information architectures(8,9).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据