4.3 Article

Dentate total molecular layer interneurons mediate cannabinoid-sensitive inhibition

期刊

HIPPOCAMPUS
卷 25, 期 8, 页码 884-889

出版社

WILEY-BLACKWELL
DOI: 10.1002/hipo.22419

关键词

dentate gyrus; interneuron; inhibition; cannabinoid

资金

  1. NIH/NINDS [R01 NS069861]
  2. Epilepsy Foundation Grants

向作者/读者索取更多资源

Activity of the dentate gyrus, which gates information flow to the hippocampus, is under tight inhibitory regulation by interneurons with distinctive axonal projections, intrinsic and synaptic characteristics and neurochemical identities. Total molecular layer cells (TML-Cs), a class of morphologically distinct GABAergic neurons with axonal projections across the molecular layer, are among the most frequent interneuronal type in the dentate subgranular region. However, little is known about their synaptic and neurochemical properties. We demonstrate that synapses from morphologically identified TML-Cs to dentate interneurons are characterized by low release probability, facilitating short-term dynamics and asynchronous release. TML-Cs consistently show somatic and axonal labeling for the cannabinoid receptor type 1 (CB1R) yet fail to express cholecystokinin (CCK) indicating their distinctive neurochemical identity. In paired recordings, the release probability at synapses between TML-Cs was increased by the CB1R antagonist AM251, demonstrating baseline endocannabinoid regulation of TML-C synapses. Apart from defining the synaptic and neurochemical features of TML-Cs, our findings reveal the morphological identity of a class of dentate CB1R-positive neurons that do not express CCK. Our findings indicate that TML-Cs can mediate cannabinoid sensitive feed-forward and feedback inhibition of dentate perforant path inputs. (c) 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据