4.3 Article

Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

期刊

NANOSCALE RESEARCH LETTERS
卷 13, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1186/s11671-018-2521-6

关键词

Oil wettability; Silicon dioxide surface; Surface charge; Molecular dynamics

资金

  1. National Natural Science Foundation of China [51506166, 51425603, 51606222]
  2. National Science and Technology Major Project [2017ZX05013003]

向作者/读者索取更多资源

Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm(2), the contact angle reaches up to 78.8 degrees and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据