4.8 Article

Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield

期刊

NANOSCALE
卷 10, 期 28, 页码 13565-13571

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr03830a

关键词

-

资金

  1. National Key R&D Program of China [2016YFA0301300]
  2. National Natural Science Foundation of China [61675237, 91750207, 11761141015, 11334015]
  3. Guangdong Natural Science Foundation [2016A030312012, 2017B030306007]
  4. Guangzhou Science and Technology Projects [201607020023, 201806010033]
  5. Fundamental Research Funds for the Central Universities [16lgjc85]

向作者/读者索取更多资源

Perovskite lasers have aroused great interest in recent years due to their ultra-low lasing threshold, high quantum yields, easily tuned emission colors and great potential for electrically pumped nanolasing, which opens up new possibilities in obtaining highly coherent light sources at the nanoscale. Compared with the widely studied organic-inorganic hybrid perovskites, the inorganic (CsPbX3) have gradually become an emerging research focus because of their relatively better stability. However, some problems still hinder their actual applications, such as the seldom explored lasing quantum yield and the difficulties of further improving stability. Herein, a simple method is proposed to synthesize CsPbX3 nanowires in ambient conditions, and these CsPbX3 nanowires exhibit perfect crystallization and outstanding stability (over 1 year). Perovskite lasing with single mode and a low threshold of 12.33 J cm(-2) as well as a high lasing quantum yield up to approximate to 58% are obtained. More interestingly, a high quality single-mode laser with ultra-narrow linewidth of 0.09 nm can be obtained when the CsPbX3 NWs are excited by continuous wave in low-temperature condition. Our results not only enrich the study of inorganic perovskite materials with a new synthetic method, but also uncover new lasing properties of CsPbX3 NWs, suggesting a broad application of the inorganic perovskite materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据