4.8 Article

Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport

期刊

NANOSCALE
卷 10, 期 8, 页码 3813-3822

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr07728a

关键词

-

资金

  1. Key Program for International S&T Cooperation Projects of China [2016YFE0132900]
  2. National Natural Science Foundation of China [51475200, 51761135110, 51775231, 51325501]
  3. Science and Technology Development Project of Jilin Province [20160204005SF, 20150519007JH]
  4. 111 project of China [B16020]

向作者/读者索取更多资源

We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 degrees C and 0 degrees C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 degrees C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Surface and Interface Engineering of Graphene Oxide Films by Controllable Photoreduction

Yu-Qing Liu, Yong-Lai Zhang, Yan Liu, Hao-Bo Jiang, Dong-Dong Han, Bing Han, Jing Feng, Hong-Bo Sun

CHEMICAL RECORD (2016)

Article Chemistry, Multidisciplinary

Laser-structured Janus wire mesh for efficient oil-water separation

Yu-Qing Liu, Dong-Dong Han, Zhi-Zhen Jiao, Yan Liu, Hao-Bo Jiang, Xuan-Hang Wu, Hong Ding, Yong-Lai Zhang, Hong-Bo Sun

NANOSCALE (2017)

Article Optics

Facile fabrication of flexible graphene FETs by sunlight reduction of graphene oxide

Jia-Nan Ma, Yan He, Yan Liu, Dong-Dong Han, Yu-Qing Liu, Jiang-Wei Mao, Hao-Bo Jiang, Yong-Lai Zhang

OPTICS LETTERS (2017)

Article Materials Science, Coatings & Films

Biomimetic super hydrophobic structured graphene on stainless steel surface by laser processing and transfer technology

Yunyun Song, Yan Liu, Haobo Jiang, Yonglai Zhang, Zhiwu Han, Luquan Ren

SURFACE & COATINGS TECHNOLOGY (2017)

Article Materials Science, Coatings & Films

Mosquito eyes inspired surfaces with robust antireflectivity and superhydrophobicity

Yunyun Song, Yan Liu, Haobo Jiang, Yonglai Zhang, Jie Zhao, Zhiwu Han, Luquan Ren

SURFACE & COATINGS TECHNOLOGY (2017)

Article Materials Science, Multidisciplinary

Facile fabrication of moisture responsive graphene actuators by moderate flash reduction of graphene oxides films

Yu-Qing Liu, Jia-Nan Ma, Yan Liu, Dong-Dong Han, Hao-Bo Jiang, Jiang-Wei Mao, Chang-Hao Han, Zhi-Zhen Jiao, Yong-Lai Zhang

OPTICAL MATERIALS EXPRESS (2017)

Article Nanoscience & Nanotechnology

Reed Leaf-Inspired Graphene Films with Anisotropic Superhydrophobicity

Hao-Bo Jiang, Yu-Qng Liu, Yong-Lai Zhang, Yan Liu, Xiu-Yan Fu, Dong-Dong Han, Yun-Yun Song, Luquan Ren, Hong-Bo Sun

ACS APPLIED MATERIALS & INTERFACES (2018)

Article Chemistry, Multidisciplinary

A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection

Yun-yun Song, Yan Liu, Hao-bo Jiang, Shu-yi Li, Cigdem Kaya, Thomas Stegmaier, Zhi-wu Han, Lu-quan Ren

NANOSCALE (2018)

Article Multidisciplinary Sciences

Bioinspired Fabrication of one dimensional graphene fiber with collection of droplets application

Yun-yun Song, Yan Liu, Hao-bo Jiang, Shu-yi Li, Cigdem Kaya, Thomas Stegmaier, Zhi-wu Han, Lu-quan Ren

SCIENTIFIC REPORTS (2017)

Article Chemistry, Multidisciplinary

Photoinduced Orientation-Dependent Interlayer Carrier Transportation in Cross-Stacked Black Phosphorus van der Waals Junctions

Wei Xin, Hao-Bo Jiang, Xiao-Kuan Li, Xiang-Feng Zhou, Jin-Long Lu, Jian-Jun Yang, ChunLei Guo, Zhi-Bo Liu, Jian-Guo Tian

ADVANCED MATERIALS INTERFACES (2018)

Article Chemistry, Multidisciplinary

Kraft Mesh Origami for Efficient Oil-Water Separation

Yu-Qing Liu, Zhi-Zhen Jiao, Yong-Lai Zhang, Yan Liu, Hao-Bo Jiang, Dong-Dong Han, Hong-Bo Sun

LANGMUIR (2019)

Article Chemistry, Multidisciplinary

Moisture-Responsive Graphene Actuators Prepared by Two-Beam Laser Interference of Graphene Oxide Paper

Hao-Bo Jiang, Yan Liu, Juan Liu, Shu-Yi Li, Yun-Yun Song, Dong-Dong Han, Lu-Quan Ran

FRONTIERS IN CHEMISTRY (2019)

Review Materials Science, Multidisciplinary

Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications

Haobo Jiang, Bo Zhao, Yan Liu, Shuyi Li, Juan Liu, Yunyun Song, Dandan Wang, Wei Xin, Luquan Ren

JOURNAL OF MATERIALS SCIENCE (2020)

Article Nanoscience & Nanotechnology

Laser Reduction of Nitrogen-Rich Carbon Nanoparticles@Graphene Oxides Composites for High Rate Performance Supercapacitors

Xiu-Yan Fu, Dong-Lin Chen, Yan Liu, Hao-Bo Jiang, Hong Xia, Hong Ding, Yong-Lai Zhang

ACS APPLIED NANO MATERIALS (2018)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)