4.8 Article

Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources

期刊

NANO LETTERS
卷 18, 期 4, 页码 2538-2544

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b00239

关键词

Coupling strength; single photon emitter; nanoantenna; nanocavity; strong coupling

资金

  1. EU-project NanoVista [288263]
  2. European Commission (ERC) [247330-NanoAntennas, 670949-Light-Net]
  3. Spanish MINECO [FIS2015-69258-P, FIS2015-72409-EXP, FIS2016-81740-REDC, SEV2015-0522]
  4. Catalan AGAUR [2014 SGR01540]
  5. CERCA Programme of Generalitat de Catalunya
  6. Fundacio CELLEX (Barcelona)

向作者/读者索取更多资源

Cavity quantum electrodynamics is the art of enhancing light-matter interaction of photon emitters in cavities with opportunities for sensing, quantum information, and energy capture technologies. To boost emitter-cavity interaction, that is, coupling strength g, ultrahigh quality cavities have been concocted yielding photon trapping times of microsecondsy to milliseconds. However, such high-Q cavities give poor photon output, hindering applications. To preserve high photon output, it is advantageous to strive for highly localized electric fields in radiatively lossy cavities. Nanophotonic antennas are ideal candidates combining low-Q factors with deeply localized mode volumes, allowing large g, provided the emitter is positioned exactly right inside the nanoscale mode volume. Here, with nanometer resolution, we map and tune the coupling strength between a dipole nanoantenna-cavity and a single molecule, obtaining a coupling rate of g(max) similar to 200 GHz. Together with accelerated single photon output, this provides ideal conditions for fast and pure nonclassical single photon emission with brightness exceeding 10(9) photons/sec. Clearly, nanoantennas acting as bad cavities offer an optimal regime for strong coupling g to deliver bright on-demand and ultrafast single photon nanosources for quantum technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据