4.1 Article

Modulation of hypersensitivity to oxidative DNA damage in ATM defective cells induced by potassium bromate by inhibition of the Poly (ADP-ribose) polymerase (PARP)

出版社

ELSEVIER
DOI: 10.1016/j.mrgentox.2018.05.009

关键词

Ataxia telangiectasia; ATM; Radiosensitivity; Oxidative stress; PARP; Potassium bromate

向作者/读者索取更多资源

The ataxia telangiectasia mutated (ATM) protein is a pivotal multifunctional protein kinase predominantly in- volved in DNA damage response, as well as in maintaining overall functional integrity of the cells. Apart from playing its major role in regulating the cellular response to DNA damage, ATM, when mutated, can additionally determine oxidative stress, metabolic syndrome, mitochondrial dysfunction and neurodegeneration. In the present paper we aim to investigate the levels of oxidative stress potentially induced by the oxidizing rodent renal carcinogen KBrO3 in ATM-defective lymphoblastoid cell lines (Las) established from four classical AT patients (with different ATM mutations), one AT variant with reduced hypersensitivity to X rays, obligate AT heterozygotes and wild type intrafamilial control. A possible modulatory involvement of PARP in potentially induced oxidative stress is also evaluated following its inhibition with 3-aminobenzamide (3-AB). Treatments with KBrO3 clearly showed a marked hypersensitivity of the ATM-defective LCLs, including the AT variant. A marked and statistically significant reduction of KBrO3-induced chromosomal damage following inhibition of PARP by 3-AB, was observed in all AT LCLs, but not in those from the AT variant, AT heterozygotes and wild type intrafamilial control. This result is suggestive of a modulatory involvement of PARP in the hypersensitivity of ATM-defective cells to DNA oxidative damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据