4.7 Article

Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock

期刊

MICROBIOLOGICAL RESEARCH
卷 209, 期 -, 页码 33-42

出版社

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.micres.2018.02.002

关键词

Population heterogeneity; Heat stress; Protein oxidation; VBNC cells; Persisters

资金

  1. University of Gdansk, Poland [DS-530/L136-D241-16-1A]

向作者/读者索取更多资源

Bacteria can form heterogeneous populations containing phenotypic variants of genetically identical cells. The heterogeneity of populations can be considered a bet-hedging strategy allowing adaptation to unknown environmental changes - at least some individual subpopulations or cells might be able to withstand future adverse conditions. Using Percoll gradient centrifugation, we demonstrated that in an Escherichia toll culture exposed to heat shock at 50 degrees C, two physiologically distinct subpopulations were formed. A high-density subpopulation (HD50) demonstrated continued growth immediately after its transfer to LB medium, whereas the growth of a low-density subpopulation (LD50) was considerably postponed. The LD50 subpopulation contained mainly viable but non-culturable bacteria and exhibited higher tolerance to sublethal concentrations of antibiotics or H2O2 than HD50 cells. The levels of aggregated proteins and main molecular chaperones were comparable in both subpopulations; however, a decreased number of ribosomes and a significant increase in protein oxidation were observed in the LD50 subpopulation as compared with the HD50 subpopulation. Interestingly, under anaerobic heat stress, the formation of the HD50 subpopulation was decreased and culturability of the LD50 subpopulation was significantly increased. In both subpopulations the level of protein aggregates formed under anaerobic and aerobic heat stress was comparable. We concluded that the formation of protein aggregates was independent of oxidative damage induced by heat stress, and that oxidative stress and not protein aggregation limited growth and caused loss of LD50 culturability. Our results indicate that heat stress induces the formation of distinct subpopulations differing in their ability to grow under standard and stress conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据