4.2 Article

Mechanisms of stress-related muscle atrophy in fish: An ex vivo approach

期刊

MECHANISMS OF DEVELOPMENT
卷 154, 期 -, 页码 162-169

出版社

ELSEVIER
DOI: 10.1016/j.mod.2018.07.002

关键词

Muscle atrophy; Glucocorticoids; Myostatin-1; Lutjanus guttatus; Ex vivo muscle culture

资金

  1. National Council for Science and Technology (CONACYT) [179098, 258545]

向作者/读者索取更多资源

Muscle development involves coordinated molecular events leading to cell proliferation, fusion, differentiation, sarcomere assembly, and myofibrogenesis. However, under physiological or pathological stress, energy requirements and secretion of glucocorticoids increase, resulting in muscle atrophy because of the depletion of energy reserves. Glucocorticoids induce muscular atrophy by two main mechanisms, protein degradation through the ubiquitin-proteasome system, and inhibition of protein synthesis through the negative regulation of the IGF1-Akt-mTOR signaling pathway. Other signaling pathways (such as the myostatin-activin-smad pathway) involved in muscle atrophy by glucocorticoid exposure are unclear. In fish, the role of glucocorticoids in muscle atrophy has not been fully elucidated. The aim of the present study was to evaluate the mechanisms of muscle atrophy induced by a synthetic glucocorticoid (dexamethasone, DEX) in an ex vivo muscle culture system of a marine fish (Lutjanus guttatus). Results showed that DEX was able to induce the expression of myostatin-1, and the expression of the transcription factor foxo3b. Myostatin-1 silencing by RNAi produced a decrease in the expression of foxo3b and murf1, and increased the expression of mtor, myod-2 and myogenin. These results suggest that in fish skeletal muscle, myostatin-1 signaling participates in glucocorticoid-induced muscle wasting through the negative regulation of genes involved in muscle growth, such as mtor, myod-2 and myogenin, and the induction of atrophy genes like foxo3b and murf1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据