4.7 Article

Microstructural evolution of adiabatic shear bands in pure copper during impact at high strain rates

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2017.11.027

关键词

Adiabatic shear bands; High strain rate deformation; Dislocation structures; Strain localization; Transmission electron microscopy; Copper; Grain refinement

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Defense Research and Development Canada (DND/DRDC)

向作者/读者索取更多资源

A systematic study was conducted on copper of commercial purity (99.9% purity) to elucidate the sequence of events that leads to the evolution of adiabatic shear bands and the structure of the evolved shear bands after strain localization during deformation at high strain rates and large strains. A direct impact Hopkinson Pressure Bar was used to deform different specimens at increasing impact momentum and strain rate followed by microstructural characterization using metallographic techniques and transmission electron microscopy. It was observed that sequential occurrence of emergence of dislocations from grain and twin boundaries, formation of dislocation cell structures and substructures with varying cell sizes and cell walls, dislocation-nucleation controlled softening and extensive micro twinning characterized the structure of the evolved adiabatic shear bands as a function of impact momentum and strain rate. The dislocation cell structures and substructures were typically made up of high-density dislocation walls surrounding low-density dislocation cell interiors. The microhardness distribution within the evolved shear bands increased up to a peak value at a critical impact momentum and strain rate (>= 45 kg m/s and >= 6827 s(-1)). Above this threshold, microhardness of the regions within the evolved shear bands decreased because of the occurrence of softening. However, the first specimen that exhibited softening had high-density dislocation cell walls surrounding dislocation-free cell interiors with no observed recrystallized grains. Despite the onset of softening both within and outside the shear bands, the regions within the shear bands were always harder than the regions outside the shear bands. The shear bands that exhibited significant softening were clad with vast distribution of microtwins in addition to evolved refined grains and sub-grains. It is discussed that thermally activated dislocation processes as a result of the rise in temperature during impact, dynamic recovery and dynamic recrystallization do not necessarily result in strain localization in the impacted copper specimens because their effects are observed in the structure of the evolved shear bands at a latter stage when strain localization had already occurred.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据