4.5 Article

Localization of 3D objects using model-constrained SLAM

期刊

MACHINE VISION AND APPLICATIONS
卷 29, 期 7, 页码 1041-1068

出版社

SPRINGER
DOI: 10.1007/s00138-018-0951-x

关键词

Simultaneous localization and mapping; Constrained bundle adjustment; Occluding contours; Memory consumption; Real time; Augmented Reality

资金

  1. french research program FUI through the project NASIMA
  2. french research program FUI through the project SEEMAKE

向作者/读者索取更多资源

Accurate and real-time camera localization relative to an object is needed for high-quality Augmented Reality applications. However, static object tracking is not an easy task in an industrial context where objects may be textured or not, have sharp edges or occluding contours, be relatively small or too large to be entirely observable from one point of view. This paper presents a localization solution built on a keyframe-based SLAM algorithm. This solution only requires a video stream of a 2D camera (color or grayscale) and the prior knowledge of a 3D mesh model of the object to localize (also named object of interest in this document). The 3D model provides an absolute constraint that drastically reduces the SLAM drift. It is based on 3D-oriented contour points called edgelets, dynamically extracted from the model using Analysis-by-Synthesis on the graphics hardware. This model constraint is then expressed through two different formalisms in the SLAM optimization process. The dynamic edgelet generation ensures the genericity of our tracking method, since it allows to localize polyhedral and curved objects. The proposed solution is easy to deploy, requiring no manual intervention on the model, and runs in real time on HD video streams. It is thus perfectly adapted for high-quality Augmented Reality experiences. Videos are available as supplementary material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据