4.6 Article

Experimental Measurement of Parameters Governing Flow Rates and Partial Saturation in Paper-Based Microfluidic Devices

期刊

LANGMUIR
卷 34, 期 30, 页码 8758-8766

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b01345

关键词

-

资金

  1. Department of Science and Technology (DST), India
  2. National Postdoctoral Fellowship (NPDF)
  3. Department of Biotechnology
  4. Indian Institute of Science (IISc Bangalore)

向作者/读者索取更多资源

Paper-based microfluidic devices are rapidly becoming popular as a platform for developing point-of-care medical diagnostic tests. However, the design of these devices largely relies on trial and error, owing to a lack of proper understanding of fluid flow through porous membranes. Any porous material having pores of multiple sizes contains partially saturated regions, i.e., regions where less than 100% of the pores are filled with fluid. The capillary pressure and permeability of the material change as a function of the extent of saturation. Although methods to measure these relationships have been developed in other fields of study, these methods have not yet been adapted for paper for use by the larger community of analytical chemists. In the current work, we present a set of experimental methods that can be used to measure the relationships between capillary pressure, permeability, and saturation for any commercially available paper membrane. These experiments can be performed using commonly available lab instruments. We further demonstrate the use of the Richards equation in modeling imbibition into two-dimensional paper networks, thus adding new capability to the field. Predictions of spatiotemporal saturation from the model were in strong agreement with experimental measurements. To make these methods readily accessible to a wide community of chemists, biologists, and clinicians, we present the first report of a simple protocol to measure the flow rates considering the effect of partial saturation. Use of this protocol could drastically reduce the trial and error involved in designing paper-based microfluidic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据