4.7 Article

Time evolution and spatial accumulation of progressive failure for Xinhua slope in the Dagangshan reservoir, Southwest China

期刊

LANDSLIDES
卷 15, 期 3, 页码 565-580

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10346-018-0946-8

关键词

Reservoir landslides; Ancient landslide deposits; Response and evolution mechanism; Time evolution; Spatial accumulation

资金

  1. National Natural Science Foundation of China [41472272]
  2. Youth Science and Technology Fund of Sichuan Province [2016JQ0011]

向作者/读者索取更多资源

This paper presents a preliminary study of time evolution and spatial accumulation of progressive failure for ancient landslide deposits in Xinhua slope. According to the geological response after impoundment, the Xinhua slope has shown the spatial accumulation of deformation, such as ground cracks in the rear edge, toe collapse, local shallow slides in intense rainfall, and progressive creep displacement. Approximately 2 years of monitoring was performed for the Xinhua slope with the assistance of the global navigation satellite system (GNSS), unmanned aerial vehicles (UAVs), and field investigations. The deformation process of a reservoir landslide is considered to be a comprehensive and complicated combination of geological influence from various adverse factors. Field investigations and monitoring indicate that the major serious influence after completion of dam construction comes from the initial large-scale impoundment, the fluctuation of water level, and the existence of a flood season. The creep/slip deformation of slope deposits is a result of integration with adverse hydraulic conditions, e.g., strong rainfall, intense currents and transient seepage flow inside the slope deposits, and activation by water level fluctuation, which can be verified from the twofold evident deformation in the flood season. For the reservoir with daily regulation ability, the occurrence of evident deformations in July highlights that the regulation plan for water level in the flood season is important for controlling the deformation of slope deposits, where the fluctuation of the water level is no more than 10 m in the operation period.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据