4.7 Article

3D-printed Quake-style microvalves and micropumps

期刊

LAB ON A CHIP
卷 18, 期 8, 页码 1207-1214

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8lc00001h

关键词

-

资金

  1. National Cancer Institute (NCI) [R01CA181445]
  2. NATIONAL CANCER INSTITUTE [R01CA181445] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Here we demonstrate a 3D-printable microvalve that is transparent, built with a biocompatible resin, and has a simple architecture that can be easily scaled up into large arrays. The open-at-rest valve design is derived from Quake's PDMS valve design. We used a stereolithographic (SL) 3D printer to print a thin (25 or 10 m-thick) membrane (1200 or 500 m-diam.) that is pneumatically pressed (similar to 3-6 psi) over a bowl-shaped seat to close the valve. We used poly(ethylene diacrylate) (MW = 258) (PEG-DA-258) as the resin because it yields transparent cytocompatible prints. Although the flexibility of PEG-DA-258 is inferior to that of other microvalve fabrication materials such as PDMS, the valve benefits from the bowl design and the membrane's high restoring force since it does not need a negative pressure to re-open. We also 3D-printed a micropump by combining three Quake-style valves in series. The micropump only requires positive pressure for its operation and profits from the fast return to the valves' open states. Moreover, we printed a 64-valve array constructed with 500 m-diam. valves to demonstrate the reliability and scalability of the valves. Overall, we demonstrate the 3D-printing of compact microvalves and micropumps using a process that precludes the need for specialized, time-consuming labor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据