4.6 Article

Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells

期刊

JOURNAL OF VIROLOGY
卷 92, 期 17, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00224-18

关键词

Aedes aegypti; anphevirus; Mononegavirales; Wolbachia; insect viruses; mosquito; virome

类别

资金

  1. Australian Research Council grant (ARC) [DP150101782]
  2. University of Queensland scholarship

向作者/读者索取更多资源

Insect-specific viruses (ISVs) of the yellow fever mosquito Aedes aegypti have been demonstrated to modulate transmission of arboviruses such as dengue virus (DENV) and West Nile virus by the mosquito. The diversity and composition of the virome of A. aegypti, however, remains poorly understood. In this study, we characterized Aedes anphevirus (AeAV), a negative-sense RNA virus from the order Mononegavirales. AeAV identified from Aedes cell lines was infectious to both A. aegypti and Aedes albopictus cells but not to three mammalian cell lines. To understand the incidence and genetic diversity of AeAV, we assembled 17 coding-complete and two partial genomes of AeAV from available transcriptome sequencing (RNA-Seq) data. AeAV appears to transmit vertically and be present in laboratory colonies, wild-caught mosquitoes, and cell lines worldwide. Phylogenetic analysis of AeAV strains indicates that as the A. aegypti mosquito has expanded into the Americas and Asia-Pacific, AeAV has evolved into monophyletic African, American, and Asia-Pacific lineages. The endosymbiotic bacterium Wolbachia pipientis restricts positive-sense RNA viruses in A. aegypti. Reanalysis of a small RNA library of A. aegypti cells coinfected with AeAV and Wolbachia produces an abundant RNA interference (RNAi) response consistent with persistent virus replication. We found Wolbachia enhances replication of AeAV compared to a tetracycline-cleared cell line, and AeAV modestly reduces DENV replication in vitro. The results from our study improve understanding of the diversity and evolution of the virome of A. aegypti and adds to previous evidence that shows Wolbachia does not restrict a range of negative-strand RNA viruses. IMPORTANCE The mosquito Aedes aegypti transmits a number of arthropod-borne viruses (arboviruses), such as dengue virus and Zika virus. Mosquitoes also harbor insect-specific viruses that may affect replication of pathogenic arboviruses in their body. Currently, however, there are only a few insect-specific viruses described from A. aegypti in the literature. Here, we characterize a novel negative-strand virus, AeAV. Meta-analysis of A. aegypti samples showed that it is present in A. aegypti mosquitoes worldwide and is vertically transmitted. Wolbachia-transinfected mosquitoes are currently being used in biocontrol, as they effectively block transmission of several positive-sense RNA viruses in mosquitoes. Our results demonstrate that Wolbachia enhances the replication of AeAV and modestly reduces dengue virus replication in a cell line model. This study expands our understanding of the virome in A. aegypti as well as providing insight into the complexity of the Wolbachia virus restriction phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Ecology

Environmental Temperature, but Not Male Age, Affects Wolbachia and Prophage WO Thereby Modulating Cytoplasmic Incompatibility in the Parasitoid Wasp, Habrobracon Hebetor

Seyede Fatemeh Nasehi, Yaghoub Fathipour, Sassan Asgari, Mohammad Mehrabadi

Summary: Temperature has a greater impact on the CI phenotype of Habrobracon hebetor wasps than male age, reducing CI penetrance and decreasing the expression of CI factors. CifA shows higher expression levels than CifB, and temperature affects Wolbachia and prophage WO titers as well as the expression levels of cif genes that modulate CI levels.

MICROBIAL ECOLOGY (2022)

Article Biotechnology & Applied Microbiology

Knockout of Dicer-2 in the Sf9 cell line enhances the replication of Spodoptera frugiperda rhabdovirus and conditionally increases baculovirus replication

Henry de Malmanche, Mazhar Hussain, Esteban Marcellin, Steve Reid, Sassan Asgari

Summary: The Sf9 cell line, widely used for the production of recombinant proteins and virus-like particles, has been found to use RNA interference (RNAi) as an antiviral response to baculovirus infection. Knocking out Dicer-2, a key protein in the RNAi pathway, resulted in increased viral replication in Sf9 cells, indicating a potential role for RNAi in managing chronic viral infections in this cell line.

JOURNAL OF GENERAL VIROLOGY (2022)

Article Biochemistry & Molecular Biology

SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein

Eduardo A. Albornoz, Alberto A. Amarilla, Naphak Modhiran, Sandra Parker, Xaria X. Li, Danushka K. Wijesundara, Julio Aguado, Adriana Pliego Zamora, Christopher L. D. McMillan, Benjamin Liang, Nias Y. G. Peng, Julian D. J. Sng, Fatema Tuj Saima, Jenny N. Fung, John D. Lee, Devina Paramitha, Rhys Parry, Michael S. Avumegah, Ariel Isaacs, Martin W. Lo, Zaray Miranda-Chacon, Daniella Bradshaw, Constanza Salinas-Rebolledo, Niwanthi W. Rajapakse, Ernst J. Wolvetang, Trent P. Munro, Alejandro Rojas-Fernandez, Paul R. Young, Katryn J. Stacey, Alexander A. Khromykh, Keith J. Chappell, Daniel Watterson, Trent M. Woodruff

Summary: COVID-19 infection may lead to neurological symptoms similar to Parkinson's disease. The study found that SARS-CoV-2 and spike protein can directly activate the NLRP3 inflammasome in microglial cells, which may contribute to the development of neuroinflammation.

MOLECULAR PSYCHIATRY (2023)

Article Multidisciplinary Sciences

Analysis of Aedes aegypti microRNAs in response to Wolbachia wAlbB infection and their potential role in mosquito longevity

Cameron Bishop, Mazhar Hussain, Leon E. Hugo, Sassan Asgari

Summary: The endosymbiotic bacterium Wolbachia can affect the longevity of Ae. aegypti mosquitoes by regulating their miRNA, providing a potential biocontrol strategy for viruses transmitted by these mosquitoes.

SCIENTIFIC REPORTS (2022)

Editorial Material Parasitology

Cross-kingdom RNAi to enhance the efficacy of insect pathogens

Sassan Asgari

Summary: Insect pathogens are crucial in controlling medical and agricultural pests. Cui et al. found that genetically modified fungi, expressing host mosquito miRNAs, can enhance the fungus's efficacy by suppressing the host immune response. This discovery paves the way for the utilization of cross-kingdom RNA interference in biocontrol.

TRENDS IN PARASITOLOGY (2023)

Article Multidisciplinary Sciences

Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti

Mazhar Hussain, Guangmei Zhang, Michael Leitner, Lauren M. Hedges, Sassan Asgari

Summary: The study found that the endosymbiotic bacterium Wolbachia blocks replication of dengue virus by inducing the expression of RNase HI gene, and knocking down this gene increases dengue virus replication. Moreover, overexpressing the RNase HI gene can reduce replication of positive sense RNA viruses but has no effect on negative sense RNA viruses, revealing the mechanism of Wolbachia-mediated virus blocking.

ISCIENCE (2023)

Article Biochemistry & Molecular Biology

ALKBH8 as a potential N-6-methyladenosine (m(6)A) eraser in insects

Zhenkai Dai, Sassan Asgari

Summary: Potential erasers of m(6)A in insects have been identified, including the candidate eraser ALKBH8. Experimental results showed that ALKBH8 can reduce the m(6)A levels in Aedes aegypti and Drosophila melanogaster RNAs.

INSECT MOLECULAR BIOLOGY (2023)

Letter Virology

Statement in Support of: Virology under the Microscope-a Call for Rational Discourse

Peter Speck, Jason Mackenzie, Rowena A. Bull, Barry Slobedman, Heidi Drummer, Johanna Fraser, Lara Herrero, Karla Helbig, Sarah Londrigan, Gregory Moseley, Natalie Prow, Grant Hansman, Robert Edwards, Chantelle Ahlenstiel, Allison Abendroth, David Tscharke, Jody Hobson-Peters, Robson Kriiger-Loterio, Rhys Parry, Glenn Marsh, Emma Harding, David A. Jacques, Matthew J. Gartner, Wen Shi Lee, Julie McAuley, Paola Vaz, Frank Sainsbury, Michelle D. Tate, Jane Sinclair, Allison Imrie, Stephen Rawlinson, Andrew Harman, Jillian M. Carr, Ebony A. Monson, Merilyn Hibma, Timothy J. Mahony, Thomas Tu, Robert J. Center, Lok Bahadur Shrestha, Robyn Hall, Morgyn Warner, Vernon Ward, Danielle E. Anderson, Nicholas S. Eyre, Natalie E. Netzler, Alison J. Peel, Peter Revill, Michael Beard, Alistair R. Legione, Alexandra J. Spencer, Adi Idris, Jade Forwood, Subir Sarker, Damian F. J. Purcell, Nathan Bartlett, Joshua M. Deerain, Bruce J. Brew, Sassan Asgari, Helen Farrell, Alexander Khromykh, Daniel Enosi Tuipulotu, David Anderson, Sevim Mese, Yaman Tayyar, Kathryn Edenborough, Jasim Muhammad Uddin, Abrar Hussain, Connor J. I. Daymond, Jacinta Agius, Karyn N. Johnson, Paniz Shirmast, Mahdi Abedinzadeshahri, Robin MacDiarmid, Caroline L. Ashley, Jay Laws, Lucy L. Furfaro, Thomas D. Burton, Stephen M. R. Johnson, Zahra Telikani, Mary Petrone, Justin A. Roby, Carolyn Samer, Andreas Suhrbier, April van der Kamp, Anthony Cunningham, Celeste Donato, Jackie Mahar, Wesley D. Black, Subhash Vasudevan, Roman Lenchine, Kirsten Spann, Daniel J. Rawle, Penny Rudd, Jessica Neil, Richard Kingston, Timothy P. Newsome, Ki Wook Kim, Johnson Mak, Kym Lowry, Nathan Bryant, Joanne Meers, Jason A. Roberts, Nigel McMillan, Larisa I. Labzin, Andrii Slonchak, Leon E. Hugo, Bennett Henzeler, Natalee D. Newton, Cassandra T. David, Patrick C. Reading, Camille Esneau, Tatiana Briody, Najla Nasr, Donna McNeale, Brian McSharry, Omid Fakhri, Bethany A. Horsburgh, Grant Logan, Paul Howley, Paul Young

JOURNAL OF VIROLOGY (2023)

Article Virology

Analysing inhibition of dengue virus in Wolbachia-infected mosquito cells following the removal of Wolbachia

Mazhar Hussain, Kayvan Etebari, Sassan Asgari

Summary: Wolbachia pipientis can block replication of positive sense RNA viruses. A study on Aedes aegypti cell lines revealed that dengue virus (DENV) was blocked in cells carrying the wAlbB strain of Wolbachia, but significantly inhibited in tetracycline-cured cells. RNA-Seq analysis showed the removal of Wolbachia and absence of Wolbachia gene expression in tetracycline-cured cells, while the abundance of phasi charoen-like virus (PCLV) was increased. Decreasing PCLV levels through RNAi resulted in increased DENV replication, indicating an antagonistic interaction between DENV and PCLV.

VIROLOGY (2023)

Letter Microbiology

Statement in Support of: Virology under the Microscope-a Call for Rational Discourse

Peter Speck, Jason Mackenzie, Rowena A. Bull, Barry Slobedman, Heidi Drummer, Johanna Fraser, Lara Herrero, Karla Helbig, Sarah Londrigan, Gregory Moseley, Natalie Prow, Grant Hansman, Robert Edwards, Chantelle Ahlenstiel, Allison Abendroth, David Tscharke, Jody Hobson-Peters, Robson Kriiger-Loterio, Rhys Parry, Glenn Marsh, Emma Harding, David A. Jacques, Matthew J. Gartner, Wen Shi Lee, Julie McAuley, Paola Vaz, Frank Sainsbury, Michelle D. Tate, Jane Sinclair, Allison Imrie, Stephen Rawlinson, Andrew Harman, Jillian M. Carr, Ebony A. Monson, Merilyn Hibma, Timothy J. Mahony, Thomas Tu, Robert J. Center, Lok Bahadur Shrestha, Robyn Hall, Morgyn Warner, Vernon Ward, Danielle E. Anderson, Nicholas S. Eyre, Natalie E. Netzler, Alison J. Peel, Peter Revill, Michael Beard, Alistair R. Legione, Alexandra J. Spencer, Adi Idris, Jade Forwood, Subir Sarker, Damian F. J. Purcell, Nathan Bartlett, Joshua M. Deerain, Bruce J. Brew, Sassan Asgari, Helen Farrell, Alexander Khromykh, Daniel Enosi Tuipulotu, David Anderson, Sevim Mese, Yaman Tayyar, Kathryn Edenborough, Jasim Muhammad Uddin, Abrar Hussain, Connor J. Daymond, Jacinta Agius, Karyn N. Johnson, Paniz Shirmast, Mahdi Abedinzadeshahri, Robin MacDiarmid, Caroline L. Ashley, Jay Laws, Lucy L. Furfaro, Thomas D. Burton, Stephen M. R. Johnson, Zahra Telikani, Mary Petrone, Justin A. Roby, Carolyn Samer, Andreas Suhrbier, April van der Kamp, Anthony Cunningham, Celeste Donato, Jackie Mahar, Wesley D. Black, Subhash Vasudevan, Roman Lenchine, Kirsten Spann, Daniel J. Rawle, Penny Rudd, Jessica Neil, Richard Kingston, Timothy P. Newsome, Ki Wook Kim, Johnson Mak, Kym Lowry, Nathan Bryant, Joanne Meers, Jason A. Roberts, Nigel McMillan, Larisa I. Labzin, Andrii Slonchak, Leon E. Hugo, Bennett Henzeler, Natalee D. Newton, Cassandra T. David, Patrick C. Reading, Camille Esneau, Tatiana Briody, Najla Nasr, Donna McNeale, Brian McSharry, Omid Fakhri, Bethany A. Horsburgh, Grant Logan, Paul Howley, Paul Young

Letter Microbiology

Statement in Support of: Virology under the Microscope-a Call for Rational Discourse

Peter Speck, Jason Mackenzie, Rowena A. Bull, Barry Slobedman, Heidi Drummer, Johanna Fraser, Lara Herrero, Karla Helbig, Sarah Londrigan, Gregory Moseley, Natalie Prow, Grant Hansman, Robert Edwards, Chantelle Ahlenstiel, Allison Abendroth, David Tscharke, Jody Hobson-Peters, Robson Kriiger-Loterio, Rhys Parry, Glenn Marsh, Emma Harding, David A. Jacques, Matthew J. Gartner, Wen Shi Lee, Julie McAuley, Paola Vaz, Frank Sainsbury, Michelle D. Tate, Jane Sinclair, Allison Imrie, Stephen Rawlinson, Andrew Harman, Jillian M. Carr, Ebony A. Monson, Merilyn Hibma, Timothy J. Mahony, Thomas Tu, Robert J. Center, Lok Bahadur Shrestha, Robyn Hall, Morgy Warner, Vernon Ward, Danielle E. Anderson, Nicholas S. Eyre, Natalie E. Netzler, Alison J. Peel, Peter Revill, Michael Beard, Alistair R. Legione, Alexandra J. Spencer, Adi Idris, Jade Forwood, Subir Sarker, Damian F. J. Purcell, Nathan Bartlett, Joshua M. Deerain, Bruce J. Brew, Sassan Asgari, Helen Farrell, Alexander Khromykh, Daniel Enosi Tuipulotu, David Anderson, Sevim Mese, Yaman Tayyar, Kathryn Edenborough, Jasim Muhammad Uddin, Abrar Hussain, Connor J. I. Daymond, Jacinta Agius, Karyn N. Johnson, Paniz Shirmast, Mahdi Abedinzadeshahri, Robin MacDiarmid, Caroline L. Ashley, Jay Laws, Lucy L. Furfaro, Thomas D. Burton, Stephen M. R. Johnson, Zahra Telikani, Mary Petrone, Justin A. Roby, Carolyn Samer, Andreas Suhrbier, April van der Kamp, Anthony Cunningham, Celeste Donato, Jackie Mahar, Wesley D. Black, Subhash Vasudevan, Roman Lenchine, Kirsten Spann, Daniel J. Rawle, Penny Rudd, Jessica Neil, Richard Kingston, Timothy P. Newsome, Ki Wook Kim, Johnson Mak, Kym Lowry, Nathan Bryant, Joanne Meers, Jason A. Roberts, Nigel McMillan, Larisa I. Labzin, Andrii Slonchak, Leon E. Hugo, Bennett Henzeler, Natalee D. Newton, Cassandra T. David, Patrick C. Reading, Camille Esneau, Tatiana Briody, Najla Nasr, Donna McNeale, Brian McSharry, Omid Fakhri, Bethany A. Horsburgh, Grant Logan, Paul Howley, Paul Young

MSPHERE (2023)

Article Infectious Diseases

Egg protein profile and dynamics during embryogenesis in Haemaphysalis flava ticks

Rong Cheng, Dan Li, De-yong Duan, Rhys Parry, Tian-yin Cheng, Lei Liu

Summary: This study aimed to depict the protein profile and dynamics in tick embryogenesis, and found 93 high-confidence proteins in tick eggs, belonging to seven functional categories. The study also revealed changes in protein abundance during embryonic development. Targeted interventions by focusing on the egg proteins could provide further insights into tick control methods.

TICKS AND TICK-BORNE DISEASES (2023)

Article Cell Biology

Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology

Julio Aguado, Alberto A. Amarilla, Atefeh Taherian Fard, Eduardo A. Albornoz, Alexander Tyshkovskiy, Marius Schwabenland, Harman K. Chaggar, Naphak Modhiran, Cecilia Gomez-Inclan, Ibrahim Javed, Alireza A. Baradar, Benjamin Liang, Lianli Peng, Malindrie Dharmaratne, Giovanni Pietrogrande, Pranesh Padmanabhan, Morgan E. Freney, Rhys Parry, Julian D. J. Sng, Ariel Isaacs, Alexander A. Khromykh, Guillermo Valenzuela Nieto, Alejandro Rojas-Fernandez, Thomas P. Davis, Marco Prinz, Bertram Bengsch, Vadim N. Gladyshev, Trent M. Woodruff, Jessica C. Mar, Daniel Watterson, Ernst J. Wolvetang

Summary: Senescent cells play a significant role in brain aging and COVID-19-induced neuropathology, and senolytic therapy shows therapeutic potential in protecting against COVID-19-induced brain aging.

NATURE AGING (2023)

Article Virology

Comparative analysis of genome-encoded viral sequences reveals the evolutionary history of flavivirids (family Flaviviridae)

Connor G. G. Bamford, William M. de Souza, Rhys Parry, Robert J. Gifford

Summary: Flavivirids, a family of RNA viruses, have been found to be over 100 million years old and have evolved in early animals, co-diverging with major animal phyla. The study also reveals that some classical flaviviruses initially evolved in hematophagous arachnids and later acquired the ability to be transmitted by insects.

VIRUS EVOLUTION (2022)

暂无数据