4.4 Article

Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets

期刊

JOURNAL OF THERMAL STRESSES
卷 41, 期 7, 页码 866-882

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01495739.2018.1425645

关键词

Carbon nanotube reinforced composite; Chebyshev-Ritz method; thermal post-buckling; von Karman nonlinearity

向作者/读者索取更多资源

Present research investigates the thermal postbuckling of sandwich plates containing a stiff core and two thin carbon nanotube reinforced composite (CNTRC) face sheets. Properties of the core, carbon nanotubes (CNTs) and polymeric matrix of the faces are assumed to be temperature-dependent. It is assumed that CNTs as reinforcements may be distributed according to a functionally graded pattern. Plate is formulated based on the first-order shear deformation theory and von Karman type of geometrical nonlinearity. The governing equations are obtained by the energy method with the aid of the Conventional Ritz method. Shape functions of the Ritz method are estimated according to the Chebyshev polynomials. A set of nonlinear eigenvalue equations is achieved. The obtained equations are homogeneous, coupled, and nonlinear in terms of both displacements and temperature. A successive displacement control strategy is implemented to trace the thermal postbuckling equilibrium path of the plate. It is shown that, with increasing the volume fraction of CNT, critical buckling temperature of sandwich plate increases and postbuckling deflection decreases. Furthermore, through a functionally graded distribution of volume fraction of CNTs across the thickness, critical buckling temperature of the sandwich plate may be enhanced and thermal postbuckling deflection may be alleviated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据