4.6 Article

In vivo atomic force microscopy-infrared spectroscopy of bacteria

期刊

出版社

ROYAL SOC
DOI: 10.1098/rsif.2018.0115

关键词

atomic force microscopy-infrared; in vivo; cell wall; Gram-positive bacteria; Gram-negative bacteria

资金

  1. Australian Research Council (ARC) Future Fellowship grant [FT120100926]
  2. ARC Discovery Project [DP180103484]

向作者/读者索取更多资源

A new experimental platform for probing nanoscale molecular changes in living bacteria using atomic force microscopy-infrared (AFM-IR) spectroscopy is demonstrated. This near-field technique is eminently suited to the study of single bacterial cells. Here, we report its application to monitor dynamical changes occurring in the cell wall during cell division in Staphylococcus aureus using AFM to demonstrate the division of the cell and AFM-IR to record spectra showing the thickening of the septum. This work was followed by an investigation into single cells, with particular emphasis on cell-wall signatures, in several bacterial species. Specifically, mainly cell wall components from S. aureus and Escherichia coli containing complex carbohydrate and phosphodiester groups, including peptidoglycans and teichoic acid, could be identified and mapped at nanometre spatial resolution. Principal component analysis of AFM-IR spectra of six living bacterial species enabled the discrimination of Gram-positive from Gram-negative bacteria based on spectral bands originating mainly from the cell wall components. The ability to monitor in vivo molecular changes during cellular processes in bacteria at the nanoscale opens a new platform to study environmental influences and other factors that affect bacterial chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据