4.6 Article

Wastewater treatment and electricity generation from a sunlight-powered single chamber microbial fuel cell

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2017.10.030

关键词

TiO2 nanotube arrays; Photoanode; Microbial fuel cell; Methylene blue; Electricity generation

资金

  1. Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) - Ministry of Science ICT [2015M1A2A2074670]

向作者/读者索取更多资源

A novel hybrid single chamber microbial fuel cell is described in which a TiO2 nanotube array (TNT) photoanode is coupled with a conventional bioanode to achieve simultaneous degradation of methylene blue (MB) dye with improved power generation. As compared to a conventional microbial fuel cell (MFC), the described hybrid-MFC exhibits enhanced power density (14%), current density (33%), and voltage (4%) while simultaneously degrading MB dye, 82.79% after 3.5 h of operation under simulated solar light illumination. The key factor attributed to the enhanced performance is the addition of photogenerated electrons to the MFC external circuit. The effect of various design configurations is also investigated, such as the presence of an air cathode, anode type, and illumination. The hybrid-MFC strategy provides new directions for productive and economical utilization of microbial fuel cells. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Facile electrochemical synthesis of anatase nano-architectured titanium dioxide films with reversible superhydrophilic behavior

Saurav Sorcar, Abdul Razzaq, Haining Tian, Craig A. Grimes, Su-Il In

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2017)

Article Materials Science, Multidisciplinary

Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4

Saurav Sorcar, Yunju Hwang, Craig A. Grimes, Su-Il In

MATERIALS TODAY (2017)

Article Chemistry, Multidisciplinary

High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C-1 to C-2 products

Saurav Sorcar, Jamie Thompson, Yunju Hwang, Young Ho Park, Tetsuro Majima, Craig A. Grimes, James R. Durrant, Su-Il In

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Physical

Novel Porous Brain Electrodes for Augmented Local Field Potential Signal Detection

Sung Hyun Lee, Kyeong-Seok Lee, Saurav Sorcar, Abdul Razzaq, Maan-Gee Lee, Su-Il In

MATERIALS (2019)

Article Chemistry, Physical

Synthesis and Growth Mechanism of Stable Prenucleated (≈0.8 nm Diameter) PbS Quantum Dots by Medium Energy Ion Scattering Spectroscopy

Young Ho Park, Seung Min Park, Kang-Won Jung, Yunju Hwang, Saurav Sorcar, Dae Woon Moon, Su-Il In

MATERIALS (2019)

Review Chemistry, Physical

Hierarchical Nanostructured Photocatalysts for CO2 Photoreduction

Chaitanya Hiragond, Shahzad Ali, Saurav Sorcar, Su-Il In

CATALYSTS (2019)

Review Chemistry, Physical

Gas Phase Photocatalytic CO2 Reduction, A Brief Overview for Benchmarking

Shahzad Ali, Monica Claire Flores, Abdul Razzaq, Saurav Sorcar, Chaitanya B. Hiragond, Hye Rim Kim, Young Ho Park, Yunju Hwang, Hong Soo Kim, Hwapyong Kim, Eun Hee Gong, Junho Lee, Dongyun Kim, Su-Il In

CATALYSTS (2019)

Review Chemistry, Physical

Electrochemical CO2 Reduction to CO Catalyzed by 2D Nanostructures

Chaitanya B. Hiragond, Hwapyong Kim, Junho Lee, Saurav Sorcar, Can Erkey, Su-Il In

CATALYSTS (2020)

Article Chemistry, Multidisciplinary

Design of coke-free methane dry reforming catalysts by molecular tuning of nitrogen-rich combustion precursors

S. Sorcar, J. Das, E. P. Komarala, L. Fadeev, B. A. Rosen, M. Gozin

Summary: The valorization of methane and carbon dioxide through dry reforming is a potential solution for combating global warming. This study focuses on the development of efficient and stable Ni/La2O3 DRM catalysts prepared by combustion synthesis. The researchers explore the relationship between the combustion precursors' structures, thermochemistry, resultant catalyst structures, and their performance under DRM conditions. The findings provide insights for the rational design of high-performance catalysts through tailoring the chemistry and structure of nitrogen-rich precursors.

MATERIALS TODAY CHEMISTRY (2022)

Article Chemistry, Physical

A catalyst support for direct-ammonia solid-oxide fuel cell anodes based on lanthanum titanium oxynitride

Saurav Sorcar, Hodaya Zinowits, Eswaravara Prasadarao Komarala, Nomi Moshe, Ira Agranovich, Brian A. Rosen

Summary: Ammonia is a promising fuel for solid-oxide fuel cells (SOFCs), and there is a pressing need to develop stable anodes for direct-ammonia SOFCs (DA-SOFCs). In this study, a novel DA-SOFC anode was developed using nickel and iron nanoparticles supported on a lanthanum titanium oxynitride support, mixed with copper and gadolinium-doped ceria. The anode showed excellent electrochemical activity and stability, with no signs of physical degradation or gas production during operation. These results suggest that oxynitride-based materials are a stable and active choice for DA-SOFC anodes.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Chemistry, Multidisciplinary

C-14 powered dye-sensitized betavoltaic cells

Yunju Hwang, Young Ho Park, Hong Soo Kim, Dae Hee Kim, Shahzad Ali, Saurav Sorcar, Monica Claire Flores, Michael R. Hoffmann, Su-Il In

CHEMICAL COMMUNICATIONS (2020)

Review Chemistry, Multidisciplinary

A review of recent progress in gas phase CO2 reduction and suggestions on future advancement

S. Sorcar, S. Yoriya, H. Lee, C. A. Grimes, S. P. Feng

MATERIALS TODAY CHEMISTRY (2020)

Article Chemistry, Multidisciplinary

CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%

Saurav Sorcar, Yunju Hwang, Jaewoong Lee, Hwapyong Kim, Keltin M. Grimes, Craig A. Grimes, Jin-Woo Jung, Chang-Hee Cho, Tetsuro Majima, Michael R. Hoffmann, Su-Il In

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Integrative & Complementary Medicine

The Biocompatibility of Nanoporous Acupuncture Needles

Saurav Sorcar, Craig A. Grimes, Su-Il In

JOURNAL OF ACUPUNCTURE AND MERIDIAN STUDIES (2018)

Article Chemistry, Physical

Colorimetric and fluorimetric detection of CN- ion using a highly selective and sensitive chemosensor derived from coumarin-hydrazone

Wiem Bouali, Muejgan Yaman, Nurgul Seferogu, Zeynel Seferogu

Summary: Novel chemosensors, including coumarin hydrazide, were synthesized and demonstrated the ability to detect cyanide ions through absorption and fluorescence turn-off response. The reaction mechanism between the sensors and the ions was determined through experimental and theoretical studies. The sensors exhibited high detection ability and effectiveness.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Accelerated naked-eye identification of cations using non-plasmonic amplification by functionalized GQDs: A novel photochemical microfluidic sensor for environmental/mineral analysis using Lab-on-paper technology

Parinaz Abdollahian, Hassan Heidari, Soheila Hassanzadeh, Mohammad Hasanzadeh

Summary: This study successfully synthesized various types of thiolated-graphene quantum dots (GQDs) and utilized them in a one-droplet microfluidic paper-based analytical device for the simultaneous multi-sensing of heavy metal ions. The GQDs were functionalized and stabilized on the surface of hydrophobic fiber-glass, enabling colorimetric chemosensing of ions including iron, copper, cobalt, mercury, chrome, manganese, and nickel. The results were confirmed using fluorescence spectrometry, and the platform showed potential for facile metal ion detection in human urine models and environmental fluids.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Kinetic study of azobenzene photoisomerization under ambient lighting

S. L. Barrett, C. Meyer, E. Cwiklik, V Fieglein, M. Burns, J. Guerrero, W. J. Brittain

Summary: Laboratory illumination is strong enough to create a photostationary state (PSS) of amphiphilic azo-benzene compounds in water. The [cis]PSS/[trans]PSS ratios were observed to be 0.33-1.2 in D2O and 0.37-3.8 in dimethyl sulfoxide-d6. ortho-Fluoroazobenzene amphiphiles show higher cis-isomer concentration at equilibrium compared to non-fluorinated compounds due to differences in optical absorption profiles. The kinetics of isomerization were measured using UV-Vis spectroscopy and the ratio of trans-to-cis rates does not directly correlate with the observed PSS. The half-life for PSS formation is 40 minutes for fluorinated compounds and 80 minutes for non-fluorinated compounds.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Synthesis of eco-friendly carboxymethyl cellulose /metal-organic framework biocomposite and its photocatalytic activity

Jalil Khodayari, Karim Zare, Omid Moradi, Mohammadreza Kalaee, Niyaz Mohammad Mahmoodi

Summary: In this study, an eco-friendly biocomposite (CMC/MIL/CuO) was synthesized and characterized, and its ability to decolorize Acid Blue 92 dye was investigated. The results showed that CMC/MIL/CuO can be used as a suitable photocatalyst for dye decolorization.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Constructing the Cu2O@Au/Cu2O integrated heterostructure cooperated with LSPR effect for enhanced photocatalytic performance via a three-in-one synergy

Bo Ma, Qian Xu, Huajun Yao, Yalin Chen, Yiyang Wang, Yunfei Yang, Hongfang Shen, Youjun Lu

Summary: This study designed an integrated structure of Cu2O@Au/Cu2O heterostructure particles, which achieved significantly enhanced photocatalytic performance by simultaneously considering the integrated structural characteristics and localized surface plasmon resonance (LSPR) effect. Experimental characterization and theoretical simulation confirmed the three-in-one synergy of the integrated heterostructure, including the LSPR effect of Au nanoparticles, the light scattering based on core-shell heterostructure, and the effective charge separation based on inter-embedded heterostructure. The concept of integrated heterostructure cooperated with LSPR effect provides a new strategy for designing future catalysts.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Effects of pH-dependent speciation on the photolytic degradation mechanism of phosphonates

Robert G. H. Marks, Sarah P. Rockel, Klaus Kerpen, Holger Somnitz, Philipp R. Martin, Maik A. Jochmann, Torsten C. Schmidt

Summary: This study investigated the pH-dependent photolysis of phosphonates in aqueous solutions and analyzed the transformation products. The results showed that the photolysis rate of phosphonates was influenced by pH and light conditions. Furthermore, the carbon kinetic isotope effects varied for different types of phosphonates.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Surface chemistry of phytochemical enriched MgO nanoparticles for antibacterial, antioxidant, and textile dye degradation applications

T. M. Naren Vidaarth, S. Surendhiran, K. S. G. Jagan, S. Savitha, K. S. Balu, A. Karthik, B. Kalpana

Summary: In this study, magnesium oxide nanoparticles were synthesized using plant seed extracts, which exhibited excellent performance in removing dyes from textile water bodies. These nanoparticles also showed strong antibacterial and antioxidant properties.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Activation mechanisms of recombination processes in irradiated poly (arylenephthalides)

Mikhail Yu. Ovchinnikov, Vyacheslav A. Antipin, Sergey L. Khursan

Summary: In this study, the recombination of separated ion-radical states (SIRS) in PAPh films was analyzed, and it was found that the contribution of X-SIRS recombination to total luminescence varies with different environments. It was also shown that the recombination of labile SIRS is independent of the nature of the atmosphere. The study theoretically substantiated that SIRS recombination can occur via the transfer of both positive and negative charges, and the efficiency of thermal activation of recombination processes depends on the ratio of radiant and conductive channels of energy transfer.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Search of electron-rich and electron-deficient building blocks through data mining and library generation for the designing of polymers for organic solar cells

Sumaira Naeem, Tayyaba Mubashir, Mudassir Hussain Tahir, Jawayria Najeeb, Ahmed Z. Dewidar, Hosam O. El-ansary, Silas Lagat, Anthony Pembere

Summary: This study presents an alternative methodology using machine learning for the selection of novel organic molecules to develop high-performance organic solar cell devices.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Influence of nickel doping and cotton stalk activated carbon loading on structural, optical, and photocatalytic properties of zinc oxide nanoparticles

D. Thirumoolan, S. Ragupathy, S. Renukadevi, P. Rajkumar, Rajakumar S. Rai, R. M. Saravana Kumar, Imran Hasan, Mani Durai, Young-Ho Ahn

Summary: In this study, the photodegradation of brilliant green dye was studied in relation to the comparative photocatalytic activity of pure ZnO and Ni-doped ZnO/CSAC. The Ni-doped ZnO/CSAC showed a higher photocatalytic degradation rate under visible light irradiation, suggesting its potential as an effective wastewater treatment material.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Synthesis of novel 2D ZIF-8 single sheet from bulk multilayed ZIF-8 crystal, through facile mixed solutin strategy, with enhanced photocatalytic performance

Ajmal Khan, Zhidong Chang, Wenjun Li, Xiaohui Ma, Mei Dong, Liang Geng, Ghulam Yasin, Shuaib Khan, Hira Anwar

Summary: Due to its functional structure and tunable shape, 2D zeolitic imidazole framework (ZIFs) have gained significant interest in various fields. In this study, thin ZIF-8 sheets were prepared using a mixed solvent and then delaminated into single layers through physical sonication. These hexagonal sheets exhibited high stability and controlled morphology, and showed excellent performance in dye degradation compared to 3D ZIF-8 crystals.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Bifunctional photo- and ionochromic hybrids of indolyl(thienyl) diarylethenes and rhodamine

Vitaly A. Podshibyakin, Evgenii N. Shepelenko, Leonid D. Popov, Tatyana M. Valova, Anton O. Ayt, Lyudmila G. Kuzmina, Anton V. Lisovin, Oleg N. Burov, Mikhail E. Kletskii, Alexander D. Dubonosov, Vladimir A. Bren

Summary: Bifunctional hybrids containing photochromic indolyl(thienyl) diarylethenes and an ionochromic rhodamine moiety connected by a dimethylene spacer were synthesized. These hybrids exhibit absorption at 450-455 nm and fluorescence at 560 nm in toluene. UV light triggers ring-closed non-fluorescent diarylethene formation, which can be reversed under visible light or in the dark. In the presence of H+ cation, a naked eye effect is observed with the opening of the rhodamine-spirolactam ring and a pink-crimson coloration at 561 nm accompanied by intense long-wavelength emission at 586 nm. This process is reversible by exposure to triethylamine, as confirmed by NMR experiments. The light-induced isomerizations and proton-induced transformations were explained using computational methods. Reversible switching of fluorescent properties can be achieved by light irradiation and proton.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf Extract: Their Bio-Pharmaceutical and catalytic properties

Majid Sharifi-Rad, Hazem S. Elshafie, Pawel Pohl

Summary: The study investigated the synthesis of silver nanoparticles using Lallemantia royleana leaf extract, characterized their physico-chemical properties, and evaluated their biopharmaceutical and catalytic applications. The synthesized nanoparticles showed good stability and exhibited higher antioxidant, antimicrobial, anti-inflammatory, anti-arthritic, and cytotoxic activities compared to the leaf extract. These results provide a promising green synthesis route for silver nanoparticles with potential biomedical and catalytic applications.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Preparation of persistently luminescent polyacrylic acid-based nanocomposite ink for secure encoding

Meera Moydeen Abdul Hameed, Badr M. Thamer

Summary: Security encoding using photochromism is an effective method for creating authentication substrates. A unique photochromic ink has been developed that emits light continuously under UV rays and darkness. The ink is produced by dispersing lanthanidedoped aluminate nanoparticles in a polymer binder. The resulting composite ink can be used to create transparent films on paper, and the stamped patterns become visible under UV rays, changing from colorless to green.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Oxazoline-appended benzimidazolium salts for selective micromolar detection of Fe3+ions in water and an experimental and theoretical insight into Fe3+ion sensing mechanism

Monika Lamoria, Rita Kakkar, Marilyn Daisy Milton

Summary: Four novel water-soluble benzimidazolium and bis-benzimidazolium salts with a fluorophore-spacer-receptor design were synthesized and demonstrated to selectively detect Fe3+ ions with large Stokes shifts. The binding mechanism and detection performance were investigated through theoretical and experimental studies.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)