4.5 Article

Blood Glutamate Scavenger as a Novel Neuroprotective Treatment in Spinal Cord Injury

期刊

JOURNAL OF NEUROTRAUMA
卷 35, 期 21, 页码 2581-2590

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/neu.2017.5524

关键词

blood glutamate scavenger; cytotoxicity; glial scar; neuroprotection; spinal cord injury

向作者/读者索取更多资源

Neurotrauma causes immediate elevation of extracellular glutamate (Glu) levels, which creates excitotoxicity and facilitates inflammation, glial scar formation, and consequently neuronal death. Finding factors that reduce the inflammatory response and glial scar formation, and increase neuronal survival and neurite outgrowth, are of major importance for improving the outcome after spinal cord injury (SCI). In the present study, we evaluated a new treatment aiming to remove central nervous system (CNS) Glu into the systemic blood circulation by intravenous (IV) administration of blood Glu scavengers (BGS) such as the enzyme recombinant glutamate-oxaloacetate transaminase 1 (rGOT1) and its co-substrate. In this study we induced in mice an SCI (hemisection), and 1h post-injury started administering BGS treatment for 5 consecutive days. The treatment reduced the expression levels of p-p38, which regulates apoptosis and increased the expression of p-Akt, which mediates cell survival. Moreover, this treatment decreased pro-inflammatory cytokine expression and microglia activation, reduced astrocytes' reactivity, and facilitated expression of radial glia markers such as Pax6 and nestin. BGS treatment increased the survival of neurons at lesion site and enabled axonal regeneration into the injury site. These effects were correlated with improved functional recovery of the left paretic hindlimb. Thus, early pharmacological intervention with BGS following SCI may be neuroprotective and create a pro-regenerative environment by modulating glia cell response. In light of our results, the availability of the method to remove excess Glu from CNS without the need to deliver drugs across the blood-brain barrier (BBB) and with minimal or no adverse effects may provide a major therapeutic asset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据