4.5 Article

MMP-2 and MMP-9 contribute to the angiogenic effect produced by hypoxia/15-HETE in pulmonary endothelial cells

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.yjmcc.2018.06.006

关键词

MMP-2; MMP-9; Hypoxia; 15-HETE; Angiogenesis

资金

  1. Key Research Plan of the National Natural Science Foundation of China [91339107]
  2. National Natural Science Foundation of China [31471095, 81270113, 81400353, 31500936]
  3. Natural Science Foundation of Heilongjiang Province [SCX-2012-9, QC2014C096]
  4. Wu Liande Youth Science Foundation [WLD-QN1410]
  5. Postdoctoral Foundation of Heilongjiang Province [LBH-Z14133]
  6. Innovation Foundation of Harbin Medical University [2017JCZX07]

向作者/读者索取更多资源

Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are the predominant gelatinases in the developing lung. Studies have shown that the expression of MMP-2 and MMP-9 is upregulated in hypoxic fibroblasts, 15-hydroxyeicosatetraenoic acid (15-HETE) regulated fibroblasts migration via modulating MMP-2 or MMP-9, and that hypoxia/15-HETE is a predominant contributor to the development of pulmonary arterial hypertension (PAH) through increased angiogenesis. However, the roles of MMP-2 and MMP-9 in pulmonary arterial endothelial cells (PAECs) angiogenesis as well as the molecular mechanism of hypoxia-regulated MMP-2 and MMP-9 expression have not been identified. The aim of this study was to investigate the role of MMP-2 and MMP-9 in PAEC proliferation and vascular angiogenesis and to determine the effects of hypoxia-induced 15-HETE on the expression of MMP-2 and MMP-9. Western blot, immunofluorescence, and real-time PCR were used to measure the expression of MMP-2 and MMP-9 in hypoxic PAECs. Immunohistochemical staining, flow cytometry, and tube formation as well as cell proliferation, viability, scratch-wound, and Boyden chamber migration assays were used to identify the roles and relationships between MMP-2, MMP-9, and 15-HETE in hypoxic PAECs. We found that hypoxia increased MMP-2 and MMP-9 expression in pulmonary artery endothelium both in vivo and in vitro in a time-dependent pattern. Moreover, administration of the MMP-2 and MMP-9 inhibitor MMI-166 significantly reversed hypoxia-induced increases in right ventricular systemic pressure (RVSP), right ventricular function, and thickening of the tunica media. Furthermore, up-regulation of MMP-2 and MMP-9 expression was induced by 15-HETE, which regulates PAEC proliferation, migration, and cell cycle transition that eventually leads to angiogenesis. Our study demonstrated that hypoxia increases the expression of MMP-2 and MMP-9 through the 15-lipoxygenase/15-HETE pathway, and that MMP-2 and MMP-9 promote PAEC angiogenesis. These findings suggest that MMP-2 and MMP-9 may serve as new potential therapeutic targets for the treatment of PAH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据