4.4 Article

Maximum energy conversion from human motion using piezoelectric flex transducer: A multi-level surrogate modeling strategy

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X18783075

关键词

Multi-level optimization strategy; surrogate model; energy harvesting; design of experiments; genetic programming; piezoelectric flex transducer

资金

  1. EPSRC [EP/K020080/1]

向作者/读者索取更多资源

Conventional engineering design optimization requires a large amount of expensive experimental tests from prototypes or computer simulations, which may result in an inefficient and unaffordable design process. In order to overcome these disadvantages, a surrogate model may be used to replace the prototype tests. To construct a surrogate model of sufficient accuracy from limited number of tests/simulations, a multi-level surrogate modeling strategy is introduced in this article. First, a chosen number of points determined by optimal Latin Hypercube Design of Experiments are used to generate global-level surrogate models with genetic programming and the fitness landscape can be explored by genetic algorithms for near-optimal solutions. Local-level surrogate models are constructed then from the extended-optimal Latin Hypercube samples in the vicinity of global optimum on the basis of a much smaller number of chosen points. As a result, an improved optimal design is achieved. The efficiency of this strategy is demonstrated by the parametric optimization design of a piezoelectric flex transducer energy harvester. The optimal design is verified by finite element simulations and the results show that the proposed multi-level surrogate modeling strategy has the advantages of faster convergence and more efficiency in comparison with the conventional single-single level surrogate modeling technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据