4.5 Article

Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT

期刊

GEOTHERMICS
卷 53, 期 -, 页码 14-26

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.geothermics.2014.03.013

关键词

Heat tracing; Geothermal system; Time-lapse; Cross-borehole electrical resistivity tomography; Temperature monitoring

资金

  1. F.R.S. - FNRS [FC 87116]
  2. Fondation Roi Baudouin - Prix Ernest Dubois [2013-8126501-F002]

向作者/读者索取更多资源

The growing demand for renewable energy leads to an increase in the development of geothermal energy projects and heat has become a common tracer in hydrology and hydrogeology. Designing geothermal systems requires a multidisciplinary approach including geological and hydrogeological aspects. In this context, electrical resistivity tomography (ERT) can bring relevant, qualitative and quantitative information on the temperature distribution in operating shallow geothermal systems or during heat tracing experiments. We followed a heat tracing experiment in an alluvial aquifer using cross-borehole timelapse ERT. Heated water was injected in a well while water of the aquifer was extracted at another well. An ERT section was set up across the main flow direction. The results of ERT were transformed into temperature using calibrated petrophysical relationships. These ERT-derived temperatures were then compared to direct temperature measurements in control piezometers collected with distributed temperature sensing (DTS) and groundwater temperature loggers. Spatially, it enabled to map the horizontal and vertical extent of the heated water plume, as well as the zones where maximum temperatures occurred. Quantitatively, the temperatures and breakthrough curves estimated from ERT were in good agreement with the ones observed directly during the rise and maximum of the curve. An overestimation, likely related to 3D effects, was observed for the tail of the heat breakthrough curve. The error made on temperature can be estimated to be between 10 and 20%, which is a fair value for indirect measurements. From our data, we estimated a quantification threshold for temperature variation of 1.2 C. These results suggest that ERT should be considered when designing heat tracing experiments or geothermal systems. It could help also to assess the geometrical complexity of the concerned reservoirs. It also appears that ERT could be a useful tool to monitor and control geothermal systems once they are in operation. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据