4.6 Article

Heavy quark-philic scalar dark matter with a vector-like fermion portal

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1475-7516/2018/07/008

关键词

dark energy theory; dark matter experiments; gamma ray theory

资金

  1. Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence Origin and Structure of the Universe
  2. National Research Foundation of Korea (NRF) Research Grant [NRF-2015R1A2A1A05001869]

向作者/读者索取更多资源

The absence of confirmed signal in dark matter (DM) direct detection (DD) may suggest weak interaction strengths between DM and the abundant constituents inside nucleon, i.e. gluons and valence light quarks. In this work we consider a real scalar dark matter S interacting only with SU(2)(L) singlet Up-type quarks U-i, = uR, c(R), t(R) via a vector like fermion 0 which has the same quantum number as U-i. The DM-nucleon scattering can proceed through both h-mediated Higgs portal (HP) and psi-mediated vector-like portal (VLP), in which HP can receive sizable radiative corrections through the new fermions. We first study the separate constraints on the new Yukawa couplings y(i) and find that the constraints of XENON1T results are strong on y(1) from VLP scattering and on y(3) from its radiative contributions to HP scattering. Since both DM-light quark interactions and HP have been well studied in the existing literature, we move forward to focus on DM heavy quark interactions. Since there is no valence c, t quark inside nucleons at mu(had) similar to 1 GeV, y(2), y(3) interactions are manifested in DM-gluon scattering at loop level. We find that renormalization group equation (RGE) and heavy quark threshold effects are important if one calculates the DM-nucleon scattering rate apsi at Mad 1 GeV while constructing the effective theory at mu(LEFT) similar to m(Z). For the benchmarks y(3) = 0.5, y(2) = 0.5,1, 3, combined results from Omega(DM)h(2) similar or equal to 0.12, XENON1T, Fermi-LAT, 13 TeV LHC data have almost excluded m(s) < m(t)/2 when only DM-{c, t} interactions are considered. FCNC of top quark can be generated at both tree level t -> psi(*),S -> cSS and loop level t -> c + gamma/g/Z, of which the branching fractions are typically below 10(-9) after passing the other constraints, which are still safe from the current top quark width measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Astronomy & Astrophysics

Is there new particle running in the loop-induced Hγγ and Hgg vertex?

Seungwon Baek, Xing-Bo Yuan

PHYSICS LETTERS B (2017)

Article Astronomy & Astrophysics

Dark matter contribution to b → sμ+μ- anomaly in local U(1)Lμ-Lτ model

Seungwon Baek

PHYSICS LETTERS B (2018)

Article Physics, Particles & Fields

Scalar dark matter search from the extended nu THDM

Seungwon Baek, Arindam Das, Takaaki Nomura

JOURNAL OF HIGH ENERGY PHYSICS (2018)

Article Physics, Particles & Fields

Dark matter for b -> s mu (+) mu (-) anomaly in a gauged U(1) (X) model

Seungwon Baek, Chaehyun Yu

JOURNAL OF HIGH ENERGY PHYSICS (2018)

Article Physics, Particles & Fields

A two loop radiative neutrino model

Seungwon Baek, Hiroshi Okada, Yuta Orikasa

NUCLEAR PHYSICS B (2019)

Article Physics, Particles & Fields

Scalar dark matter behind b s anomaly

Seungwon Baek

JOURNAL OF HIGH ENERGY PHYSICS (2019)

Article Astronomy & Astrophysics

Dirac neutrino from the breaking of Peccei-Quinn symmetry

Seungwon Baek

PHYSICS LETTERS B (2020)

Article Physics, Particles & Fields

A connection between flavour anomaly, neutrino mass, and axion

Seungwon Baek

JOURNAL OF HIGH ENERGY PHYSICS (2020)

Article Physics, Particles & Fields

Inelastic dark matter, small scale problems, and the XENON1T excess

Seungwon Baek

Summary: The study focuses on a generic model where the dark sector consists of Majorana dark matter, an excited state, and a light dark photon. By utilizing the light dark photon Z', the model is able to explain excess electron-recoil data observed in the XENON1T experiment. Additionally, the relic abundance of dark matter is addressed through the thermal freeze-out mechanism via annihilation processes.

JOURNAL OF HIGH ENERGY PHYSICS (2021)

Review Physics, Nuclear

A next-generation liquid xenon observatory for dark matter and neutrino physics

J. Aalbers, S. S. AbdusSalam, K. Abe, V Aerne, F. Agostini, S. Ahmed Maouloud, D. S. Akerib, D. Y. Akimov, J. Akshat, A. K. Al Musalhi, F. Alder, S. K. Alsum, L. Althueser, C. S. Amarasinghe, F. D. Amaro, A. Ames, T. J. Anderson, B. Andrieu, N. Angelides, E. Angelino, J. Angevaare, V. C. Antochi, D. Anton Martin, B. Antunovic, E. Aprile, H. M. Araujo, J. E. Armstrong, F. Arneodo, M. Arthurs, P. Asadi, S. Baek, X. Bai, D. Bajpai, A. Baker, J. Balajthy, S. Balashov, M. Balzer, A. Bandyopadhyay, J. Bang, E. Barberio, J. W. Bargemann, L. Baudis, D. Bauer, D. Baur, A. Baxter, A. L. Baxter, M. Bazyk, K. Beattie, J. Behrens, N. F. Bell, L. Bellagamba, P. Beltrame, M. Benabderrahmane, E. P. Bernard, G. F. Bertone, P. Bhattacharjee, A. Bhatti, A. Biekert, T. P. Biesiadzinski, A. R. Binau, R. Biondi, Y. Biondi, H. J. Birch, F. Bishara, A. Bismark, C. Blanco, G. M. Blockinger, E. Bodnia, C. Boehm, A. Bolozdynya, P. D. Bolton, S. Bottaro, C. Bourgeois, B. Boxer, P. Bras, A. Breskin, P. A. Breur, C. A. J. Brew, J. Brod, E. Brookes, A. Brown, E. Brown, S. Bruenner, G. Bruno, R. Budnik, T. K. Bui, S. Burdin, S. Buse, J. K. Busenitz, D. Buttazzo, M. Buuck, A. Buzulutskov, R. Cabrita, C. Cai, D. Cai, C. Capelli, J. M. R. Cardoso, M. C. Carmona-Benitez, M. Cascella, R. Catena, S. Chakraborty, C. Chan, S. Chang, A. Chauvin, A. Chawla, H. Chen, V Chepel, N. Chott, D. Cichon, A. Cimental Chavez, B. Cimmino, M. Clark, R. T. Co, A. P. Colijn, J. Conrad, M. Converse, M. Costa, A. Cottle, G. Cox, O. Creaner, J. J. Cuenca Garcia, J. P. Cussonneau, J. E. Cutter, C. E. Dahl, A. David, M. P. Decowski, J. B. Dent, F. F. Deppisch, L. de Viveiros, P. Di Gangi, A. Di Giovanni, S. Di Pede, J. Dierle, S. Diglio, J. E. Y. Dobson, M. Doerenkamp, D. Douillet, G. Drexlin, E. Druszkiewicz, D. Dunsky, K. Eitel, A. Elykov, T. Emken, R. Engel, S. R. Eriksen, M. Fairbairn, A. Fan, J. J. Fan, S. J. Farrell, S. Fayer, N. M. Fearon, A. Ferella, C. Ferrari, A. Fieguth, A. Fieguth, S. Fiorucci, H. Fischer, H. Flaecher, M. Flierman, T. Florek, R. Foot, P. J. Fox, R. Franceschini, E. D. Fraser, C. S. Frenk, S. Frohlich, T. Fruth, W. Fulgione, C. Fuselli, P. Gaemers, R. Gaior, R. J. Gaitskell, M. Galloway, F. Gao, I. Garcia Garcia, J. Genovesi, C. Ghag, S. Ghosh, E. Gibson, W. Gil, D. Giovagnoli, F. Girard, R. Glade-Beucke, F. Glueck, S. Gokhale, A. de Gouvea, L. Graf, L. Grandi, J. Grigat, B. Grinstein, M. G. D. van der Grinten, R. Groessle, H. Guan, M. Guida, R. Gumbsheimer, C. B. Gwilliam, C. R. Hall, L. J. Hall, R. Hammann, K. Han, V Hannen, S. Hansmann-Menzemer, R. Harata, S. P. Hardin, E. Hardy, C. A. Hardy, K. Harigaya, R. Harnik, S. J. Haselschwardt, M. Hernandez, S. A. Hertel, A. Higuera, C. Hils, S. Hochrein, L. Hoetzsch, M. Hoferichter, N. Hood, D. Hooper, M. Horn, J. Howlett, D. Q. Huang, Y. Huang, D. Hunt, M. Iacovacci, G. Iaquaniello, R. Ide, C. M. Ignarra, G. Iloglu, Y. Itow, E. Jacquet, O. Jahangir, J. Jakob, R. S. James, A. Jansen, W. Ji, X. Ji, F. Joerg, J. Johnson, A. Joy, A. C. Kaboth, L. Kalhor, A. C. Kamaha, K. Kanezaki, K. Kar, M. Kara, N. Kato, P. Kavrigin, S. Kazama, A. W. Keaveney, J. Kellerer, D. Khaitan, A. Khazov, G. Khundzakishvili, I Khurana, B. Kilminster, M. Kleifges, P. Ko, M. Kobayashi, D. Kodroff, G. Koltmann, A. Kopec, A. Kopmann, J. Kopp, L. Korley, V. N. Kornoukhov, E. Korolkova, H. Kraus, L. M. Krauss, S. Kravitz, L. Kreczko, V. A. Kudryavtsev, F. Kuger, J. Kumar, B. Lopez Paredes, L. LaCascio, R. Laha, Q. Laine, H. Landsman, R. F. Lang, E. A. Leason, J. Lee, D. S. Leonard, K. T. Lesko, L. Levinson, C. Levy, I Li, S. C. Li, T. Li, S. Liang, C. S. Liebenthal, J. Lin, Q. Lin, S. Lindemann, M. Lindner, A. Lindote, R. Linehan, W. H. Lippincott, X. Liu, K. Liu, J. Liu, J. Loizeau, F. Lombardi, J. Long, M. Lopes, E. Lopez Asamar, W. Lorenzon, C. Lu, S. Luitz, Y. Ma, P. A. N. Machado, C. Macolino, T. Maeda, J. Mahlstedt, P. A. Majewski, A. Manalaysay, A. Mancuso, L. Manenti, A. Manfredini, R. L. Mannino, N. Marangou, J. March-Russell, F. Marignetti, T. Marrodan Undagoitia, K. Martens, R. Martin, I Martinez-Soler, J. Masbou, D. Masson, E. Masson, S. Mastroianni, M. Mastronardi, J. A. Matias-Lopes, M. E. McCarthy, N. McFadden, E. McGinness, D. N. McKinsey, J. McLaughlin, K. McMichael, P. Meinhardt, J. Menendez, Y. Meng, M. Messina, R. Midha, D. Milisavljevic, E. H. Miller, B. Milosevic, S. Milutinovic, S. A. Mitra, K. Miuchi, E. Mizrachi, K. Mizukoshi, A. Molinario, A. Monte, C. M. B. Monteiro, M. E. Monzani, J. S. Moore, K. Mora, J. A. Morad, J. D. Morales Mendoza, S. Moriyama, E. Morrison, E. Morteau, Y. Mosbacher, B. J. Mount, J. Mueller, A. St J. Murphy, M. Murra, D. Naim, S. Nakamura, E. Nash, N. Navaieelavasani, A. Naylor, C. Nedlik, H. N. Nelson, F. Neves, J. L. Newstead, K. Ni, J. A. Nikoleyczik, V Niro, U. G. Oberlack, M. Obradovic, K. Odgers, P. Oikonomou, I Olcina, K. Oliver-Mallory, A. Oranday, J. Orpwood, I Ostrovskiy, K. Ozaki, B. Paetsch, S. Pal, J. Palacio, K. J. Palladino, J. Palmer, P. Panci, M. Pandurovic, A. Parlati, N. Parveen, S. J. Patton, V Pec, Q. Pellegrini, B. Penning, G. Pereira, R. Peres, Y. Perez-Gonzalez, E. Perry, T. Pershing, R. Petrossian-Byrne, J. Pienaar, A. Piepke, G. Pieramico, M. Pierre, M. Piotter, V Pizzella, G. Plante, T. Pollmann, D. Porzio, J. Qi, Y. Qie, J. Qin, F. Quevedo, N. Raj, M. Rajado Silva, K. Ramanathan, D. Ramirez Garcia, J. Ravanis, L. Redard-Jacot, D. Redigolo, S. Reichard, J. Reichenbacher, C. A. Rhyne, A. Richards, Q. Riffard, G. R. C. Rischbieter, A. Rocchetti, S. L. Rosenfeld, R. Rosero, N. Rupp, T. Rushton, S. Saha, P. Salucci, L. Sanchez, P. Sanchez-Lucas, D. Santone, J. M. F. dos Santos, I Sarnoff, G. Sartorelli, A. B. M. R. Sazzad, M. Scheibelhut, R. W. Schnee, M. Schrank, J. Schreiner, P. Schulte, D. Schulte, H. Schulze Eissing, M. Schumann, T. Schwemberger, A. Schwenk, T. Schwetz, L. Scotto Lavina, P. R. Scovell, H. Sekiya, M. Selvi, E. Semenov, F. Semeria, P. Shagin, S. Shaw, S. Shi, E. Shockley, T. A. Shutt, R. Si-Ahmed, J. J. Silk, C. Silva, M. C. Silva, H. Simgen, F. Simkovic, G. Sinev, R. Singh, W. Skulski, J. Smirnov, R. Smith, M. Solmaz, V. N. Solovov, P. Sorensen, J. Soria, T. J. Sparmann, I Stancu, M. Steidl, A. Stevens, K. Stifter, L. E. Strigari, D. Subotic, B. Suerfu, A. M. Suliga, T. J. Sumner, P. Szabo, M. Szydagis, A. Takeda, Y. Takeuchi, P-L Tan, C. Taricco, W. C. Taylor, D. J. Temples, A. Terliuk, P. A. Terman, D. Thers, K. Thieme, T. Thuemmler, D. R. Tiedt, M. Timalsina, W. H. To, F. Toennies, Z. Tong, F. Toschi, D. R. Tovey, J. Tranter, M. Trask, G. C. Trinchero, M. Tripathi, D. R. Tronstad, R. Trotta, Y. D. Tsai, C. D. Tunnell, W. G. Turner, R. Ueno, P. Urquijo, U. Utku, A. Vaitkus, K. Valerius, E. Vassilev, S. Vecchi, V. Velan, S. Vetter, A. C. Vincent, L. Vittorio, G. Volta, B. von Krosigk, M. von Piechowski, D. Vorkapic, C. E. M. Wagner, A. M. Wang, B. Wang, Y. Wang, W. Wang, J. J. Wang, L-T Wang, M. Wang, Y. Wang, J. R. Watson, Y. Wei, C. Weinheimer, E. Weisman, M. Weiss, D. Wenz, S. M. West, T. J. Whitis, M. Williams, M. J. Wilson, D. Winkler, C. Wittweg, J. Wolf, T. Wolf, F. L. H. Wolfs, S. Woodford, D. Woodward, C. J. Wright, V. H. S. Wu, P. Wu, S. Wustling, M. Wurm, Q. Xia, X. Xiang, Y. Xing, J. Xu, Z. Xu, D. Xu, M. Yamashita, R. Yamazaki, H. Yan, L. Yang, Y. Yang, J. Ye, M. Yeh, I Young, H. B. Yu, T. T. Yu, L. Yuan, G. Zavattini, S. Zerbo, Y. Zhang, M. Zhong, N. Zhou, X. Zhou, T. Zhu, Y. Zhu, Y. Zhuang, J. P. Zopounidis, K. Zuber, J. Zupan

Summary: This article discusses how to study dark matter and neutrinos using a dual-phase xenon time-projection chamber, which has extensive sensitivity to various dark matter candidates and can cover a wide range of parameter space. These detectors can also investigate neutrinos through neutrinoless double-beta decay and various astrophysical sources. A next-generation xenon-based detector will serve as a truly multi-purpose observatory to advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology.

JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS (2023)

Article Astronomy & Astrophysics

Addendum to Invisible Higgs decay width versus dark matter direct detection cross section in Higgs portal dark matter models

Seungwon Baek, P. Ko, Wan-Il Park

Summary: In the Higgs portal vector dark matter model, the behavior difference of the invisible Higgs decay width in the massless VDM limit demonstrates a limitation of effective field theory and the importance of gauge-invariant and renormalizable models.

PHYSICAL REVIEW D (2022)

Article Astronomy & Astrophysics

XENON1T excess in local Z2 DM models with light dark sector

Seungwon Baek, Jongkuk Kim, P. Ko

PHYSICS LETTERS B (2020)

Article Astronomy & Astrophysics

Minimal renormalizable simplified dark matter model with a pseudoscalar mediator

Seungwon Baek, P. Ko, Jinmian Li

PHYSICAL REVIEW D (2017)

Article Astronomy & Astrophysics

Leptoquark explanation of h → μτ and muon (g-2)

Seungwon Baek, Kenji Nishiwaki

PHYSICAL REVIEW D (2016)

暂无数据