4.8 Article

Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles

期刊

JOURNAL OF CONTROLLED RELEASE
卷 275, 期 -, 页码 107-116

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2018.02.016

关键词

Gene delivery; pDNA; YSK05; R8; Nanoparticles

资金

  1. Special Education and Research Expenses from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) - Japan [17H0505207]

向作者/读者索取更多资源

We report on the development of a highly efficient gene delivery system based on synergism between octaarginine (R8), a representative cell penetrating peptide, and YSK05, a recently developed pH-sensitive cationic lipid. Attaching a high density of R8 on the surface of YSK05 nanoparticles (NPs) that contained encapsulated plasmid DNA resulted in the formation of positively charged NPs with improved transfection efficiency. To avoid the development of a net positive charge, we controlled the density and topology of the R8 peptide through the use of a two-step coating methodology, in which the inner lipid coat was modified with a low density of R8 which was then covered with an outer neutral YSK05 lipid layer. Although used in low amounts, the R8 peptide improved cellular uptake and endosomal escape of the DNA encapsulated in YSK05 NPs, which resulted in a high transfection efficiency. The two-step coating design was essential for achieving a high degree of transfection, as evidenced by the low activity of NPs modified with the same amount of R8 in a regular single-coated design. In addition, a high transfection efficiency was not observed when R8 or YSK05 were used alone, which confirms the existence of a synergistic effect between both components. The results of this study indicate that cationic cell penetrating peptides have the ability to improve transfection activities without imparting a net positive charge when used in the proper amount and in conjunction with the appropriate design. This is expected to significantly increase the potential applications of these peptides as tools for augmenting the activity of lipid nanoparticles used in gene delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据