4.8 Article

RNA nanoparticle distribution and clearance in the eye after subconjunctival injection with and without thermosensitive hydrogels

期刊

JOURNAL OF CONTROLLED RELEASE
卷 270, 期 -, 页码 14-22

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2017.11.028

关键词

RNA nanotechnology; Double-stranded RNA; Temperature sensitive polymer; Subconjunctival; Ocular delivery

资金

  1. NIH [R21EY024409]
  2. Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program
  3. NCI [U01CA207946]
  4. NATIONAL CANCER INSTITUTE [U01CA207946] Funding Source: NIH RePORTER
  5. NATIONAL EYE INSTITUTE [R21EY024409] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Thermodynamically and chemically stable RNA nanoparticles derived from the three-way junction (3WJ) of the pRNA from bacteriophage phi29 DNA packaging motor were examined previously for ocular delivery. It was reported that, after subconjunctival injection, RNA nanoparticles with tri-way shape entered the corneal cells but not the retinal cells, whereas particle with four-way shape entered both corneal and retinal cells. The present study evaluated ocular delivery of RNA nanoparticles with various shapes and sizes, and assessed the effect of thermosensitive hydrogels (poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid); PLGA-PEG-PLGA) for increasing the retention of RNA nanoparticles in the eye. Fluorescence imaging of mouse eyes and fluorescence microscopy of dissected eye tissues from the conjunctiva, cornea, retina, and sclera were performed to determine the distribution and clearance of the nanoparticles in the eyes after subconjunctival injection in vivo. RNA nanoparticles entered the cells of the conjunctiva, cornea, retina, and sclera after subconjunctival delivery. The clearance of RNA pentagon was slower than both RNA square and triangle of the same designed edge length (10 nm) in the eye, and the clearance of RNA squares of the longer edge lengths (10 and 20 nm) was slower than RNA square of the shorter edge length (5 nm), thus indicating that the size could affect ocular pharmacokinetics of the nanoparticles. At 24 h after the injection, approximately 6-10% of the fluorescence signal from the larger nanoparticles in the study (RNA square of 20 nm edge length and RNA pentagon of 10 nm edge length) remained in the eye, and up to 70% of the retinal cells contained the nanoparticles. The results suggest that the larger nanoparticles were gulped in conjunctival, corneal, retinal, and scleral cells, similar to the behavior observed in macrophages. Additionally, the combination of RNA nanoparticles with the thermosensitive polymers increased the retention of the nanoparticles in the eye.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据