4.7 Article

Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 364, 期 -, 页码 420-467

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2018.03.002

关键词

Magnetohydrodynamics; Entropy stability; Divergence-free magnetic field; Divergence cleaning

资金

  1. Bonn-Cologne Graduate School for Physics and Astronomy (BCGS) through the Excellence Initiative [GSC 260]
  2. Deutsche Forschungsgemeinschaft (DFG) [SPP 1573]
  3. European Research Council (RADFEEDBACK) [679852]
  4. European Research Council [71448]
  5. Gauss Centre for Supercomputing e.V.
  6. [Sonderforschungsbereich (SFB) 956]
  7. European Research Council (ERC) [679852] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme). (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据