4.7 Article

Facile method to immobilize ZnO particles on glass spheres for the photocatalytic treatment of tannery wastewater

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 518, 期 -, 页码 192-199

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.02.033

关键词

ZnO; Glass spheres; Structured catalyst; Dip-coating; Tannery wastewater

向作者/读者索取更多资源

In order to apply the photocatalytic processes on a real scale for the treatment of industrial wastewaters, the use of slurry reactors employing suspended photocatalysts is not suitable due to the need for an uncomfortable and expensive separation phase of photocatalyst. To overcome this disadvantage, the photocatalyst particles must be immobilized on a transparent support: our work proposes, for this reason, a simple and cost effective method for the deposition of ZnO photocatalyst on glass spheres in order to formulate a structured photocatalyst effective in the treatment of aqueous solutions containing various organic dyes, commonly used in the tannery industries and in the treatment of a real wastewater at high COD content (11 g/L) coming from the refining unit of the tanning process. In particular, ZnO was immobilized on glass spheres (ZnO/GS) with a simple dip coating method, starting from zinc acetate aqueous solution, without using complexing agent and strong basic compounds. The optimization of ZnO amount on glass spheres was evaluated employing Acid Blue 7 dye, as model pollutant. In particular, it was found that best performances in terms of discoloration and mineralization of the target dye were obtained using the photocatalyst with a ZnO loading equal to 0.19 wt% (ZnO_ac1), prepared through only one dip coating step. Moreover, the ZnO_ac1 photocatalyst can be easily separated from the reaction mixture, maintaining excellent photocatalytic activity and durability even after several reuse cycles. Finally, ZnO_ac1 showed a high photocatalytic activity in the treatment of the real wastewater, obtaining a COD removal equal to 70% after 180 min of UV light irradiation. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据