4.7 Article

Numerical investigation of oblique impact of multiple drops on thin liquid film

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 530, 期 -, 页码 586-594

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.05.107

关键词

Drop impact; Oblique impact; Liquid film; Moment-of-fluid method

向作者/读者索取更多资源

Hypothesis: When multiple drops impact on a thin liquid film, the interaction dynamic between two impinging drops is prominent. High-speed (>50 m/s) oblique impacts of drops on a liquid film result in asymmetrical splashing patterns and further complicate the phenomenon. To understand the interaction between injected crowns from splashing, numerical simulations are very useful to study the flow behaviors. Simulations: Three-dimensional simulations are performed to investigate the impact of two adjacent drops on a thin liquid layer using a multiphase flow solver. The solver solves Navier-Stokes equations on Cartesian grids and uses the moment-of-fluid method for interface reconstruction. The numerical code is first validated with three experimental studies and good agreements are obtained. Simulations of oblique impacts of two adjacent drops are then conducted for low-speed and high-speed impacts. Findings: The numerical results show that strong interaction occurs when the crowns formed by two adjacent drops interfere with each other. For low-speed impact, drops deposit on to the liquid film with short and thick crater rims formed and the interaction region is a superposition of the crater edges. For high-speed impact, crowns break up to form splashing and the interaction behavior becomes complicated. (C) 2018 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据