4.6 Article

Delineating FtsQ-mediated regulation of cell division in Mycobacterium tuberculosis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 293, 期 32, 页码 12331-12349

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA118.003628

关键词

cell division; Mycobacterium tuberculosis; phosphorylation; mycobacteria; protein kinase; FtsQ; regulation; dcw operon; divisome; septation

资金

  1. Department of Science and Technology, Government of India [EMR/2014/000877]

向作者/读者索取更多资源

Identifying and characterizing the individual contributors to bacterial cellular elongation and division will improve our understanding of their impact on cell growth and division. Here, we delineated the role of ftsQ, a terminal gene of the highly conserved division cell wall (dcw) operon, in growth, survival, and cell length maintenance in the human pathogen Mycobacterium tuberculosis (Mtb). We found that FtsQ overexpression significantly increases the cell length and number of multiseptate cells. FtsQ depletion in Mtb resulted in cells that were shorter than WT cells during the initial growth stages (4 days after FtsQ depletion) but were longer than WT cells at later stages (10 days after FtsQ depletion) and compromised the survival in vitro and in differentiated THP1 macrophages. Overexpression of N- and C-terminal FtsQ regions altered the cell length, and the C-terminal domain alone complemented the FtsQ depletion phenotype. MS analyses suggested robust FtsQ phosphorylation on Thr-24, and although phosphoablative and -mimetic mutants rescued the FtsQ depletion-associated cell viability defects, they failed to complement the cell length defects. MS and coimmunoprecipitation experiments identified 63 FtsQ-interacting partners, and we show that the interaction of FtsQ with the recently identified cell division protein SepIVA is independent of FtsQ phosphorylation and suggests a role of FtsQ in modulating cell division. FtsQ exhibited predominantly septal localization in both the presence and absence of SepIVA. Our results suggest a role for FtsQ in modulating the length, division, and survival of Mtb cells both in vitro and in the host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据