4.7 Article

Platinum nanoparticles on nitrogen-doped carbon and nickel composites surfaces: A high electrical conductivity for methanol oxidation reaction

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 763, 期 -, 页码 250-256

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2018.05.313

关键词

Methanol oxidation reaction; Platinum; Nickel; Carbon supports; Dispersion; Electrical conductivity

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [NRF-2015R1A1A1A05001252]

向作者/读者索取更多资源

Carbon has acquired considerable attention in view of its application as supports for platinum (Pt) catalyst in direct methanol fuel cells (DMFCs) with promising renewable energy source due to their high surface area and excellent chemical stability. However, the progress of carbon supports still needs to move towards the practical utilization of high-performance DMFCs. In the present study, we propose a novel support of nitrogen (N)-doped carbon and nickel (Ni) composites produced from protein using an impregnation process and carbonization to increase the electrical conductivity. To this end, we fabricated the Pt nanoparticles on N-doped carbon and Ni composites (Pt@NC/Ni). To obtain the optimized electrochemical performance, the amount of Ni components into carbon supports was controlled by three types. Specifically, as compared to commercial Pt/C and other samples, the optimized Pt@NC/Ni with the high electrical conductivity of 0.75 S cm(-1) shows the lowest onset potential of 0.03 V, the highest anodic current density of 744 mA mgPt(-1), and an excellent catalytic stability with the highest retention rate of 86%. Accordingly, this novel support provides multiple advantages in terms of the well-dispersed Pt nanoparticles on the surface, N-doping effect of carbon supports, and an increased electrical conductivity by the introduction of Ni components. Therefore, Pt@NC/Ni is a promising novel catalyst to enhance electrochemical performance of methanol oxidation reaction. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据