4.7 Article

Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: Investigation using ultrasonic SMAT and HPT processes

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 737, 期 -, 页码 337-346

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2017.12.053

关键词

Beta titanium alloys; Metal hydrides; Severe plastic deformation (SPD); Surface mechanical attrition treatment (SMAT); High-pressure torsion (HPT)

资金

  1. MEXT, Japan [16H04539, 26220909]
  2. French State through the program Investment in the future [ANR-11-LABX-0008- 01]
  3. Grants-in-Aid for Scientific Research [16H04539, 26220909] Funding Source: KAKEN

向作者/读者索取更多资源

Lattice defects can have contradicting effects on the hydrogen storage behavior of titanium-vanadiumchromium alloys: they may facilitate the surface activation, or they may deteriorate the hydriding/dehydriding reversibility. In this study, two types of microstructure containing different structural defects were investigated to gain further insights on the impact of lattice defects on the hydrogen storage performance of beta Ti-V-Cr alloys: (i) a gradient-structure with high density of surface defects processed by ultrasonic surface mechanical attrition treatment (SMAT), and (ii) a uniform structure containing highly-strained nanograins processed by high-pressure torsion (HPT). Because of the effect of surface lattice defects on initial activation, both the SMAT-and HPT-processed materials readily absorbed hydrogen at room temperature. However, while the SMAT-processed samples showed good hydrogen storage reversibility, the HPT-processed materials exhibited poor reversibility because of the effect of bulk defects on hindering the hydrogen transport to/from the hydride. The results clearly demonstrate that the engineering of structural defects on the surface is an effective approach to achieve both easy activation and good reversibility. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Inorganic & Nuclear

High Yield Autoclave Synthesis of pure M2B12H12 (M = Na, K)

Jian Wang, Timothy Steenhaut, Hai-Wen Li, Yaroslav Filinchuk

Summary: A simple, efficient, and environmentally friendly solvothermal method was developed to prepare high-purity Na2B12H12 and K2B12H12, paving the way for large-scale synthesis of M(x)B(12)H(12) derivatives.

INORGANIC CHEMISTRY (2023)

Article Chemistry, Physical

Crystal structure and hydrogen storage properties of AB-type TiZrNbCrFeNi high-entropy alloy

Gaspar Andrade, Guilherme Zepon, Kaveh Edalati, Abbas Mohammadi, Zhongliang Ma, Hai-Wen Li, Ricardo Floriano

Summary: The crystal structure and hydrogen storage properties of a new equiatomic TiZrNbCrFeNi high-entropy alloy (HEA) were investigated. The alloy exhibited an AB-type configuration, selected through thermodynamic calculations and showed the ability to absorb 1.5 wt% of hydrogen at room temperature without activation. Cyclical testing revealed changes in the fractions of two C14 Laves phases, with one phase having higher reactivity towards hydrogen. The alloy exhibited a single C14 Laves phase after dehydrogenation at 473 K, and microstructural analysis showed excellent homogeneity and element distribution.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2023)

Review Chemistry, Physical

Advanced Photocatalysts for CO2 Conversion by Severe Plastic Deformation (SPD)

Saeid Akrami, Tatsumi Ishihara, Masayoshi Fuji, Kaveh Edalati

Summary: Excessive CO2 emission from fossil fuel usage has led to global warming and environmental crises. The photocatalytic conversion of CO2 to CO or useful components is a new strategy to address this issue. The main challenge is finding photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) has been used to develop active catalysts for CO2 conversion. These strategies can enhance photocatalytic efficiency by improving CO2 adsorption, increasing light absorbance, aligning the band structure, and providing active sites for photocatalytic reactions. This article reviews recent progress in using SPD to develop functional ceramics for photocatalytic CO2 conversion.

MATERIALS (2023)

Review Chemistry, Physical

Superfunctional Materials by Ultra-Severe Plastic Deformation

Kaveh Edalati

Summary: Superfunctional materials refer to materials with specific properties that surpass those of engineering materials. Severe plastic deformation (SPD) has been widely studied as an effective means to enhance the functional and mechanical properties of metallic and non-metallic materials. Recently, the concept of ultra-SPD, which introduces shear strains exceeding 1000 to reduce the thickness of sheared phases to atomic distances, has been utilized to synthesize novel superfunctional materials. This article discusses the application of ultra-SPD in controlling atomic diffusion, phase transformation, and the synthesis of materials with superfunctional properties.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen

Abbas Mohammadi, Payam Edalati, Makoto Arita, Jae Wung Bae, Hyoung Seop Kim, Kaveh Edalati

Summary: In this study, three strategies are combined to achieve excellent strength-plasticity combinations in the presence of hydrogen embrittlement phenomena. First, an FCC high-entropy alloy with slow hydrogen lattice diffusion is selected. Second, aluminum is added to hinder surface-to-bulk hydrogen diffusion. Third, low-mobility lattice defects like nanotwins and Lomer-Cottrell locks are introduced by severe plastic deformation to suppress hydrogen-enhanced localized plasticity and stress concentration. The Al0.1CrFeCoNi alloy severely deformed by high-pressure torsion exhibits an ultrahigh yield strength of 1.96 GPa and a high elongation to failure of 10%.

CORROSION SCIENCE (2023)

Review Materials Science, Multidisciplinary

Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys

Kaveh Edalati, Etsuo Akiba, Walter J. Botta, Yuri Estrin, Ricardo Floriano, Daniel Fruchart, Thierry Grosdidier, Zenji Horita, Jacques Huot, Hai-Wen Li, Huai-Jun Lin, Adam Revesz, Michael J. Zehetbauer

Summary: Magnesium and its alloys are extensively studied for solid-state hydrogen storage, but there are challenges in the kinetics and thermodynamics of hydrogenation and dehydrogenation. Severe plastic deformation methods have been utilized to improve the activation, air resistance, and kinetics of Mg-based hydrogen storage materials by introducing ultrafine/nanoscale grains and crystal lattice defects. These deformed materials, particularly with alloying additives or second-phase nanoparticles, exhibit fast hydrogen absorption/desorption kinetics and good cycling stability. The study also highlights the application of severe plastic deformation methods in hydrogen binding-energy engineering and the synthesis of new magnesium alloys for reversible low/room-temperature hydrogen storage.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Inorganic & Nuclear

Liquid Channels Built-In Solid Magnesium Hydrides for Boosting Hydrogen Sorption

Zhi-Kang Qin, Li-Qing He, Xiao-Li Ding, Ting-Zhi Si, Ping Cui, Hai-Wen Li, Yong-Tao Li

Summary: Building liquid channels in magnesium hydride by introducing lithium borohydride ion conductors improves its low-temperature hydrogen sorption. For example, 5 wt% LiBH4-doped MgH2 can release about 7.1 wt.% H-2 within 40 min at 300 degrees C, while pure MgH2 only desorbs less than 0.7 wt.% H-2. Additionally, the LiBH4-doped MgH2 exhibits faster desorption kinetics with more than 10 times enhancement compared to pure MgH2, and maintains a stable cyclic performance even after six absorption and desorption cycles. This approach provides insights for promoting hydrogen absorption and desorption of other metal hydrides.

INORGANICS (2023)

Review Chemistry, Physical

Preparation and regeneration of metal borohydrides for high-density hydrogen supply: Progress, challenges, and perspectives

Junrui Zhang, Haiwen Li, Xuezhang Xiao, Liuzhang Ouyang

Summary: Metal borohydrides have high theoretical hydrogen production/storage densities and offer efficient real-time hydrogen supply for electronics. However, their practical applications are limited. Strategies to overcome these limitations, such as optimizing the boron/hydrogen source and reducing agent, are summarized in this review. Ouyang developed a practical and low-cost method for regenerating MBH4 by ball milling, which has the potential to decrease the synthesis cost and increase the reversibility of metal borohydrides.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Review Materials Science, Multidisciplinary

Magnesium borohydride Mg(BH 4 ) 2 for energy applications: A review

Xiao Li, Yigang Yan, Torben R. Jensen, Yaroslav Filinchuk, Iurii Dovgaliuk, Dmitry Chernyshov, Liqing He, Yongtao Li, Hai-Wen Li

Summary: Mg(BH4)2 is a high capacity hydrogen storage material with new functions of gas physisorption and ionic conductivity. This review summarizes the recent progress on its energy related functions, including reversible hydrogen storage, gas adsorption, and electrolyte application.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Review Materials Science, Multidisciplinary

Superfunctional high-entropy alloys and ceramics by severe plastic deformation

Parisa Edalati, Masayoshi Fuji, Kaveh Edalati

Summary: This article reviews the recent advances in the application of severe plastic deformation to developing superfunctional high-entropy materials, highlighting their superior properties for various mechanical and functional applications.

RARE METALS (2023)

Article Materials Science, Multidisciplinary

Realizing fast Li-ion conduction of Li3PO4 solid electrolyte at low temperature by mechanochemical formation of lithium-containing dual-shells

Shunqin Zeng, Xiaoli Ding, Liqing He, Hai-Wen Li, Qingan Zhang, Yongtao Li

Summary: Dual lithium-containing hydride/oxide shells are formed by in situ mechano-induced assembly of Li3PO4 and LiBH4. The ionic conductivity of the Li3PO4-based composite is significantly improved by nearly 4 orders of magnitude, reaching 0.04 mS cm(-2) at 75°C, with an electrochemical window of -0.2-5 V (vs. Li/Li+).

MATERIALS ADVANCES (2023)

Review Engineering, Chemical

High-Pressure Torsion for Highly-Strained and High-Entropy Photocatalysts

Saeid Akrami, Parisa Edalati, Masayoshi Fuji, Kaveh Edalati

Summary: Nowadays, the environmental crisis caused by fossil fuels and CO2 emissions is a widespread concern. Photocatalysis is a promising clean technology for producing hydrogen fuel, converting harmful components, and degrading pollutants. However, the low efficiency of photocatalysis remains a significant drawback. Recent studies have shown that high-pressure torsion (HPT) can effectively improve the activity of conventional photocatalysts and synthesize highly efficient ones by increasing light absorbance, narrowing the bandgap, aligning the band structure, and decreasing electron-hole recombination through introducing lattice strain, vacancies, high-pressure phases, heterojunctions, and high-entropy ceramics. This review discusses the recent findings on improving photocatalyst efficiency through HPT processing and the parameters that contribute to these improvements.

KONA POWDER AND PARTICLE JOURNAL (2023)

Article Chemistry, Physical

Structural and kinetic adjustments of Zr-based high-entropy alloys with Laves phases by substitution of Mg element

Fuhu Yin, Yu Chang, Tingzhi Si, Jing Chen, Hai-Wen Li, Yongtao Li, Qingan Zhang

Summary: In this study, new Zr-based high-entropy alloys with Laves phases were designed, and their structure and hydrogen storage properties were adjusted by introducing Mg element. The results show that the addition of Mg element improves the hydrogen storage capacity and kinetics of these alloys, making them potential candidates for hydrogen storage materials.

ENERGY ADVANCES (2023)

Article Chemistry, Inorganic & Nuclear

An eco-friendly electrolyte additive for high-power primary aqueous Mg-air batteries

Bingjie Ma, Wenbin Jiang, Liuzhang Ouyang, Haiwen Li

Summary: This study suggests using glycine as an electrolyte additive in 3.5 wt% NaCl solution to enhance the discharge performance of commercial AZ31 magnesium alloys at high current densities.

INORGANIC CHEMISTRY FRONTIERS (2023)

Article Chemistry, Physical

Magnetic/optical assessments of RFeO3 (R=La, Pr, Nd, and Sm) ceramics: An experimental and theoretical discernment

J. Zamora, T. Bautista, N. S. Portillo-Velez, A. Reyes-Montero, H. Pfeiffer, F. Sanchez-Ochoa, H. A. Lara-Garcia

Summary: Experimental and DFT studies were conducted on the structural, magnetic, and optical properties of RFeO3 perovskites. The perovskites exhibited an orthorhombic crystal structure and weak ferromagnetic behavior. They were confirmed to be semiconductors with a bandgap of approximately 2.1 eV.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

The effect of Ti-based surface layer on AlSi thin film as a high-performance anode for the lithium-ion battery

Xianxiang Lv, Jing Jin, Weiguang Yang

Summary: By depositing TiN and TiO2 surface layers on AlSi films, the electrochemical performance of silicon-based anodes can be significantly improved, suppressing volume expansion and promoting the formation of a stable SEI layer.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Bifunctional phosphate-modulated Cu2O/CeO2 redox heterojunction: A promising approach for proficient CO2 reduction

Sharafat Ali, Haider Ali, Syedul Hasnain Bakhtiar, Sajjad Ali, Muhammad Zahid, Ahmed Ismail, Pir Muhammad Ismail, Amir Zada, Imran Khan, Huahai Shen, Rizwan Ullah, Habib Khan, Mohamed Bououdina, Xiaoqiang Wu, Fazal Raziq, Liang Qiao

Summary: The construction and optimization of redox-heterojunctions using a bifunctional phosphate as an electron-bridge demonstrated significant improvements in photo catalytic activity, including enhanced dispersion, reduced interfacial migration resistance, and increased abundance of active-sites.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Engineering heterogeneous synergistic interface and multifunctional cobalt-iron site enabling high-performance oxygen evolution reaction

Ren-Ni Luan, Na Xu, Chao-Ran Li, Zhi-Jie Zhang, Yu-Sheng Zhang, Jun Nan, Shu-Tao Wang, Yong-Ming Chai, Bin Dong

Summary: Extensive research has revealed that oxygen evolution reaction (OER) in alkaline conditions involves dynamic surface restructuring. The development and design of sulfide/oxide pre-catalysts can reasonably adjust the composition and structure after surface reconstruction, which is crucial for OER. This study utilized a simple two-step hydrothermal method to achieve in situ S leaching and doping, inducing the composition change and structure reconstruction of CoFe oxides. The transformed FeOOH and CoOOH exhibited excellent OER activity and could be easily mass-produced using low-cost iron based materials and simple methods.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Highly efficiency blue emissive from Bi3+ions in zero-dimensional organic bismuth halide for white LED applications

Jun'an Lai, Daofu Wu, Peng He, Kang An, Yijia Wang, Peng Feng, WeiWei Chen, Zixian Wang, Linfeng Guo, Xiaosheng Tang

Summary: Zero-dimensional organic-inorganic metal halides (OMHs) are gaining attention in the fabrication of light-emitting diodes due to their broad emission band and high photoluminescence quantum yield. This work synthesized a zero-dimensional organic tetraphenylphosphonium bismuth chloride (TBC) that showed efficient blue light emission, with the emission mechanism attributed to the transition of Bi3+ ions. White light-emitting diodes (WLEDs) were fabricated using TBC, along with green-emitting and red-emitting single crystals, achieving single-component white emissions. These findings demonstrate the different emission mechanism of ns2 ions-based OMHs and highlight the potential of bismuth-based OMHs in WLEDs applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Study on the wear resistance and mechanism of AlCrCuFe2NiTix high-entropy surfacing alloys

Xuewei Liang, Yunhai Su, Taisen Yang, Zhiyong Dai, Yingdi Wang, Xingping Yong

Summary: The revolutionary design concept of high-entropy alloys has brought new opportunities and challenges to the development of advanced metal materials. In this work, AlCrCuFe2NiTix high-entropy flux cored wires were prepared by combining the design idea of a high-entropy alloy with the characteristics of flux cored wire. AlCr-CuFe2NiTix high-entropy surfacing alloys were prepared using gas metal arc welding technology. The wear properties of the alloys were analyzed, and the phase composition, microstructure, strengthening mechanism, and wear mechanism were discussed. The results show that the alloys exhibit a dendritic microstructure with BCC/B2 + FCC phases. Increasing Ti content leads to the precipitation of Laves phase. The alloys show improved microhardness and wear resistance due to the precipitation of coherent B2 and Laves phases. However, excessive Ti addition results in the increase of Laves phase and reduced wear resistance of the alloys.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Facile synthesis of ternary g-C3N4/polyacrylic acid/CoFe2O4 nanocomposites for solar light irradiated photocatalytic and supercapacitor applications

M. Vadivel, M. Senthil Pandian, P. Ramasamy, Qiang Jing, Bo Liu

Summary: This work presents the enhanced photocatalytic and electrochemical performance of g-C3N4 assisted PAA on CoFe2O4 ternary nanocomposites. The incorporation of PAA and g-C3N4 improves the separation efficiency of photogenerated charge carriers, resulting in superior photocatalytic degradation and high specific capacitance values.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Investigation on bio-synthesized Ni- and Al-doped cobalt ferrite using lemon juice as eco-fuel

Vibhu T. Sivanandan, Ramany Revathy, Arun S. Prasad

Summary: In this study, pure and doped cobalt ferrite nanoparticles were prepared using the sol-gel auto-combustion method with the aid of lemon juice as eco-fuel. The crystal structure, lattice parameter, crystallite size, microstrain, optical parameters, and room temperature magnetic properties of the samples were analyzed. The effect of doping on the magnetic properties was also investigated.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Cu, Ni and Ag ions assisted preparation of nonpolar preferential oriented ZnO films with controlled morphology and optical properties

Qing Guo, Bowen Zhang, Benzhe Sun, Yang Qi

Summary: This study prepared ZnO films with various nonpolar preferred orientations using conventional chemical bath deposition method and characterized their growth process and mechanism. It was found that the type and concentration of nitrate could control the preferred orientation and surface roughness of ZnO films. Additionally, ZnO films with different preferred orientations exhibited different optical properties.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Characterization of magnetic FeCo particles with controlled bimetallic composition

Chong Zhang, Yan Liu, Zhaoyan Wang, Hang Yang

Summary: In this study, six bimetallic FeCo particles were synthesized via the hydrothermal method at different Fe:Co ratios. The Fe:Co ratio not only modulates the composition of the particles but also influences their structure and magnetic properties. The FeCo alloys showed a transformation from an Fe-based structure to a Co-based structure with increasing Co content. The Fe:Co ratio of 1:1 and 3:1 resulted in particles with the highest and lowest saturation magnetization, respectively.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Micro-alloying effects of Ta and B on nano-oxides and grain boundaries in 13CrWTi-ODS ferritic alloys

Jianning Zhang, Jing Li, Yiren Wang, Xiaodong Mao, Yong Jiang

Summary: We conducted a study on the formation of ultra-fine Y-Ti-Ta-O nano-oxides in Ta+B micro-alloyed 13CrWTi-ODS alloys using electron microscopy and first-principles calculations. The Y-Ti-Ta-O nano-oxides were found to be mainly Y2(Ti,Ta)2O7, with an average size of 7 nm and a number density of 6.8 x 1023 m-3. Excess boron was found to enhance the adhesion of some low-sigma grain boundaries but weaken the Fe/Y2Ti2O7 interface, while excess tantalum enhanced the Fe/Y2Ti2O7 interface but caused serious degradation of grain boundaries.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Nitrogen-doped reduced graphene oxide/black phosphorus quantum dot composites for electrocatalytic treatment of choroidal melanoma

Yirong Fang, Pei Cheng, Hang Yuan, Hao Zhao, Lishu Zhang

Summary: A new composite system of nitrogen-doped reduced graphene oxide and black phosphorus quantum dots has been developed for tumor therapy, showing improved electrochemical properties and stability. The system generates hydrogen peroxide and hydroxyl radical to effectively kill tumor cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Significantly enhanced magnetism in cobalt ferrite by manganese and terbium co-doping

Xiufang Qin, Yuanli Ma, Hui Zhang, Ting Zhang, Fang Wang, Xiaohong Xu

Summary: The structure and magnetism of cobalt ferrites after Mn2+-Tb3+ co-doping were studied. Co-doped samples exhibited cubic spinel structure and spherical shape of ferrite nanoparticles. The redistribution of Co2+ and Fe3+ ions between octahedral and tetrahedral sites was observed due to Mn2+-Tb3+ co-doping. The coercivity and magnetization saturation of co-doped samples were significantly improved, leading to a maximum energy product that is 190% higher than that of the un-doped sample.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

High-performance low-temperature solid oxide fuel cell with nanostructured lanthanum strontium cobaltite/yttria-stabilized zirconia cathode via advanced co-sputtering

Ho Yeon Lee, Wonjong Yu, Yoon Ho Lee

Summary: Recently, there has been an increasing interest in developing ultra-fine nanostructured electrodes with extensive reaction areas to enhance the performance and low-temperature operation of solid oxide fuel cells. The use of a refined approach involving co-sputtering metal alloys and oxide targets has demonstrated the feasibility of nano-columnar structures in perovskite-based electrodes, expanding the temperature range of thin film electrodes. This study systematically examines the effects of chamber pressure control in the co-sputtering process and identifies the intricate relationship between sputtering pressure and film structure. By fine-tuning the columnar growth in the electrode, significant improvements in performance and thermo-mechanical properties were achieved, resulting in high-performance all-sputtered solid oxide fuel cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction

Qianyun Bai, Xiaoxiao Yan, Da Liu, Kang Xiang, Xin Tu, Yanhui Guo, Renbing Wu

Summary: This study proposes a simple method to develop a non-precious transition metal-based electrocatalyst with high catalytic activity and robustness for the hydrogen evolution reaction. The as-synthesized electrode exhibits a low overpotential and high current density, indicating its potential in energy conversion.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)